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Kernelization lower bounds
[Bodlaender, Downey, Fellows, Hermelin, ICALP’08]
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Kernelization lower bounds with co-nondeterminism

Start with a language L, that is “NP-hard under co-nondeterministic
many-one reductions”.

I.e., ∃ nondeterministic poly-time reduction from NP-hard L̄ to L, that
if input ∈ L̄, then all outputs ∈ L, and
if input /∈ L̄, then on at least one computation path output /∈ L.

Compose t instances xi in co-nondeterministic poly-time into one
OR-instance of Q with parameter ≤ poly(maxi |xi |)to(1).

That is, if at least one xi ∈ L, then all outputs ∈ Q.
If all xi /∈ L, then on at least one computation path output /∈ Q.

Then, a (co-nondeterministic) polynomial kernelization of Q implies
NP ⊆ coNP/poly.
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Case study: Π-Induced Subgraph

Co-nondeterminism first used by Kratsch (SODA’12) for Ramsey.

Does a graph G has a clique or independent size of size k?

Our work: generalize to most important cases of Π-Induced Subgraph.

Π-Induced Subgraph

Input: A graph G and a parameter k.
Question: Does there exist an induced subgraph of G on k vertices that belongs
to Π?

[Khot, Raman, 2000] ⇒ Π-Induced Subgraph is FPT iff Π contains all
cliques and independent sets.

Note: Ramsey = {cliques, ind. sets}-Induced Subgraph.
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Π-Induced Subgraph
co-nondeterministic NP-hardness

Π-Induced Subgraph NP-hard unless trivial [Lewis, Yannakakis, 1980].

For composition: much easier with improvement version.

Improvement Π-Induced Subgraph

Input: A graph G , a parameter k , and a set X ⊆ V (G ) of size k − 1 such that
G [X ] ∈ Π.
Question: Does there exist an induced subgraph of G on k vertices that belongs
to Π?

Not so easy to get Karp-style NP-hardness for Improvement Π-Induced
Subgraph.

But we need only co-nondeterministic reduction! That is trivial.

Guess minimum 1 ≤ k ′ ≤ k such that (G , k ′) is a Π-Induced Subgraph
NO-instance and guess X of size k ′ − 1 such that G [X ] ∈ Π.
Note: we need Π to be poly-recognizable.
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Π-Induced Subgraph
co-nondeterministic compositions

Assume Π is closed under embedding.

G

H

v

Embed(G , v 7→ H)

H
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Π-Induced Subgraph
co-nondeterministic compositions

H1

H2

H3

H4

H5

t instances of

Improvement-Π-IS
equal parameter k

host graph with t vertices

each vertex ∈ `-vertex Π-ind. subgr.

no (` + 1)-vertex Π-ind. subgr.

k ′ = `(k − 1) + 1
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Π-Induced Subgraph
co-nondeterministic compositions

Need a host graph!

Crucial property: ` = to(1).

As in [Kratsch, SODA 2012]: use co-nondeterminism!

One catch: need proof of existence.

Solution: Erdős-Hajnal property.

Erdős-Hajnal conjecture

For any (not cofinite) hereditary graph property Π, there exists ε = ε(Π), such
that any G ∈ Π has an independent set or a clique of size nε.

Open, proven for several special classes, such as perfect or Ks,s -free graphs.

Π has the Erdős-Hajnal property ⇒ good host graph exists and we can find it
in coNP-time.

S. Kratsch, M. Pilipczuk, A. Rai, V. Raman Kernel lower bounds using co-nondeterminism. . . 9/12



Π-Induced Subgraph
co-nondeterministic compositions

Need a host graph!

Crucial property: ` = to(1).

As in [Kratsch, SODA 2012]: use co-nondeterminism!

One catch: need proof of existence.
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Erdős-Hajnal conjecture

For any (not cofinite) hereditary graph property Π, there exists ε = ε(Π), such
that any G ∈ Π has an independent set or a clique of size nε.

Open, proven for several special classes, such as perfect or Ks,s -free graphs.
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Erdős-Hajnal conjecture

For any (not cofinite) hereditary graph property Π, there exists ε = ε(Π), such
that any G ∈ Π has an independent set or a clique of size nε.

Open, proven for several special classes, such as perfect or Ks,s -free graphs.
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Summary of results

Summarizing, we can prove that:

Theorem

No poly-kernel for Π-Induced Subgraph for any non-trivial poly-recognizable
hereditary graph class Π that contains all independent sets and cliques, is
closed under embedding and has the Erdős-Hajnal property.

Includes perfect graphs, cographs and permutation graphs.
Using a few more tricks or by a reduction from Ramsey:

Theorem

No poly-kernel for Π-Induced Subgraph for any non-trivial poly-recognizable
hereditary graph class Π that contains all independent sets, but excludes a
certain biclique.

Includes chordal, interval, unit interval, claw-free and split graphs.
Note: excluding a biclique implies the Erdős-Hajnal property.
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Conclusions

We have shown kernelization hardness for most natural FPT-cases of
Π-Induced Subgraph.

Can we obtain a general lower bound for all FPT-cases of Π-Induced
Subgraph?

Interesting case: AT-free graphs.

Closed under embedding, so would fall under the first theorem. . .
if only the Erdős-Hajnal property was proven for them!

Big open problem: prove Erdős-Hajnal conjecture.
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Thank you

Questions?

Tikz faces based on a code by Raoul Kessels,
http://www.texample.net/tikz/examples/emoticons/,

under Creative Commons Attribution 2.5 license (CC BY 2.5)
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