Kernel lower bounds using co-nondeterminism: Finding induced hereditary subgraphs

Stefan Kratsch, Marcin Pilipczuk, Ashutosh Rai, Venkatesh Raman

SWAT 2012, Helsinki

poly time

.

of hard language L

poly time

 \longrightarrow

t instances of hard language L

• Start with a language *L*, that is "NP-hard under co-nondeterministic many-one reductions".

- Start with a language *L*, that is "NP-hard under co-nondeterministic many-one reductions".
 - I.e., \exists nondeterministic poly-time reduction from NP-hard \overline{L} to L, that

- Start with a language *L*, that is "NP-hard under co-nondeterministic many-one reductions".
 - I.e., \exists nondeterministic poly-time reduction from NP-hard \overline{L} to L, that
 - if input $\in \overline{L}$, then all outputs $\in L$, and

- Start with a language *L*, that is "NP-hard under co-nondeterministic many-one reductions".
 - I.e., \exists nondeterministic poly-time reduction from NP-hard \overline{L} to L, that
 - if input $\in \overline{L}$, then **all** outputs $\in L$, and
 - if input $\notin \overline{L}$, then on at least one computation path output $\notin L$.

- Start with a language *L*, that is "NP-hard under co-nondeterministic many-one reductions".
 - I.e., \exists nondeterministic poly-time reduction from NP-hard \overline{L} to L, that
 - if input $\in \overline{L}$, then **all** outputs $\in L$, and
 - if input $\notin \overline{L}$, then on at least one computation path output $\notin L$.
- Compose t instances x_i in co-nondeterministic poly-time into one OR-instance of Q with parameter $\leq poly(\max_i |x_i|)t^{o(1)}$.

- Start with a language *L*, that is "NP-hard under co-nondeterministic many-one reductions".
 - I.e., \exists nondeterministic poly-time reduction from NP-hard \overline{L} to L, that
 - if input $\in \overline{L}$, then **all** outputs $\in L$, and
 - if input $\notin \overline{L}$, then on at least one computation path output $\notin L$.
- Compose t instances x_i in co-nondeterministic poly-time into one OR-instance of Q with parameter $\leq poly(\max_i |x_i|)t^{o(1)}$.
 - That is, if at least one $x_i \in L$, then all outputs $\in Q$.

- Start with a language *L*, that is "NP-hard under co-nondeterministic many-one reductions".
 - I.e., \exists nondeterministic poly-time reduction from NP-hard \overline{L} to L, that
 - if input $\in \overline{L}$, then **all** outputs $\in L$, and
 - if input $\notin \overline{L}$, then on at least one computation path output $\notin L$.
- Compose t instances x_i in co-nondeterministic poly-time into one OR-instance of Q with parameter $\leq poly(\max_i |x_i|)t^{o(1)}$.
 - That is, if at least one $x_i \in L$, then all outputs $\in Q$.
 - If all $x_i \notin L$, then on at least one computation path output $\notin Q$.

- Start with a language *L*, that is "NP-hard under co-nondeterministic many-one reductions".
 - I.e., \exists nondeterministic poly-time reduction from NP-hard \overline{L} to L, that
 - if input $\in \overline{L}$, then **all** outputs $\in L$, and
 - if input $\notin \overline{L}$, then on at least one computation path output $\notin L$.
- Compose t instances x_i in co-nondeterministic poly-time into one OR-instance of Q with parameter $\leq poly(\max_i |x_i|)t^{o(1)}$.
 - That is, if at least one $x_i \in L$, then **all** outputs $\in Q$.
 - If all $x_i \notin L$, then on at least one computation path output $\notin Q$.
- Then, a (co-nondeterministic) polynomial kernelization of Q implies NP ⊆ coNP/poly.

• Co-nondeterminism first used by Kratsch (SODA'12) for RAMSEY.

• Co-nondeterminism first used by Kratsch (SODA'12) for RAMSEY.

• Does a graph G has a clique or independent size of size k?

- Co-nondeterminism first used by Kratsch (SODA'12) for RAMSEY.
 - Does a graph G has a clique or independent size of size k?
- Our work: generalize to most important cases of Π-INDUCED SUBGRAPH.

- Co-nondeterminism first used by Kratsch (SODA'12) for RAMSEY.
 - Does a graph G has a clique or independent size of size k?
- Our work: generalize to most important cases of Π -INDUCED SUBGRAPH.

 Π -Induced Subgraph

- Co-nondeterminism first used by Kratsch (SODA'12) for RAMSEY.
 - Does a graph G has a clique or independent size of size k?
- Our work: generalize to most important cases of Π -INDUCED SUBGRAPH.

Π -Induced Subgraph

Input: A graph G and a parameter k.

- Co-nondeterminism first used by Kratsch (SODA'12) for RAMSEY.
 - Does a graph G has a clique or independent size of size k?
- Our work: generalize to most important cases of Π -INDUCED SUBGRAPH.

Π -Induced Subgraph

Input: A graph G and a parameter k.

Question: Does there exist an induced subgraph of G on k vertices that belongs to Π ?

- Co-nondeterminism first used by Kratsch (SODA'12) for RAMSEY.
 - Does a graph G has a clique or independent size of size k?
- Our work: generalize to most important cases of Π -INDUCED SUBGRAPH.

Π -Induced Subgraph

Input: A graph G and a parameter k.

Question: Does there exist an induced subgraph of G on k vertices that belongs to Π ?

• [Khot, Raman, 2000] $\Rightarrow \Pi$ -INDUCED SUBGRAPH is FPT iff Π contains all cliques and independent sets.

- Co-nondeterminism first used by Kratsch (SODA'12) for RAMSEY.
 - Does a graph G has a clique or independent size of size k?
- Our work: generalize to most important cases of Π -INDUCED SUBGRAPH.

Π -Induced Subgraph

Input: A graph G and a parameter k.

Question: Does there exist an induced subgraph of G on k vertices that belongs to Π ?

- [Khot, Raman, 2000] $\Rightarrow \Pi$ -INDUCED SUBGRAPH is FPT iff Π contains all cliques and independent sets.
- Note: RAMSEY = {cliques, ind. sets}-INDUCED SUBGRAPH.

$\begin{array}{l} \Pi \text{-} INDUCED & SUBGRAPH \\ \text{co-nondeterministic NP-hardness} \end{array}$

• **Π**-INDUCED SUBGRAPH NP-hard unless trivial [Lewis, Yannakakis, 1980].

- **Π**-INDUCED SUBGRAPH NP-hard unless trivial [Lewis, Yannakakis, 1980].
- For composition: much easier with improvement version.

Improvement Π -Induced Subgraph
- **Π**-INDUCED SUBGRAPH NP-hard unless trivial [Lewis, Yannakakis, 1980].
- For composition: much easier with improvement version.

Input: A graph G, a parameter k, and a set $X \subseteq V(G)$ of size k - 1 such that $G[X] \in \Pi$.

- **Π**-INDUCED SUBGRAPH NP-hard unless trivial [Lewis, Yannakakis, 1980].
- For composition: much easier with improvement version.

- **Π**-INDUCED SUBGRAPH NP-hard unless trivial [Lewis, Yannakakis, 1980].
- For composition: much easier with improvement version.

Input: A graph *G*, a parameter *k*, and a set $X \subseteq V(G)$ of size k - 1 such that $G[X] \in \Pi$. **Question**: Does there exist an induced subgraph of *G* on *k* vertices that belongs to Π ?

• Not so easy to get Karp-style NP-hardness for IMPROVEMENT **Π**-INDUCED SUBGRAPH.

- **Π**-INDUCED SUBGRAPH NP-hard unless trivial [Lewis, Yannakakis, 1980].
- For composition: much easier with improvement version.

- Not so easy to get Karp-style NP-hardness for IMPROVEMENT **Π**-INDUCED SUBGRAPH.
- But we need only co-nondeterministic reduction! That is trivial.

- **Π**-INDUCED SUBGRAPH NP-hard unless trivial [Lewis, Yannakakis, 1980].
- For composition: much easier with improvement version.

- Not so easy to get Karp-style NP-hardness for IMPROVEMENT **Π**-INDUCED SUBGRAPH.
- But we need only co-nondeterministic reduction! That is trivial.
 - Guess minimum $1 \le k' \le k$ such that (G, k') is a Π -INDUCED SUBGRAPH NO-instance and guess X of size k' 1 such that $G[X] \in \Pi$.

- **Π**-INDUCED SUBGRAPH NP-hard unless trivial [Lewis, Yannakakis, 1980].
- For composition: much easier with improvement version.

- Not so easy to get Karp-style NP-hardness for IMPROVEMENT **Π**-INDUCED SUBGRAPH.
- But we need only co-nondeterministic reduction! That is trivial.
 - Guess minimum $1 \le k' \le k$ such that (G, k') is a Π -INDUCED SUBGRAPH NO-instance and guess X of size k' 1 such that $G[X] \in \Pi$.
 - Note: we need Π to be poly-recognizable.

Π -Induced Subgraph

co-nondeterministic compositions

t instances of IMPROVEMENT- Π -IS equal parameter k

co-nondeterministic compositions

t instances of IMPROVEMENT- Π -IS equal parameter k

host graph with t vertices

co-nondeterministic compositions

t instances of IMPROVEMENT- Π -IS equal parameter k

host graph with t vertices each vertex $\in \ell$ -vertex Π -ind. subgr.

co-nondeterministic compositions

t instances of IMPROVEMENT- Π -IS equal parameter k

host graph with t vertices each vertex $\in \ell$ -vertex Π -ind. subgr. no $(\ell + 1)$ -vertex Π -ind. subgr.

co-nondeterministic compositions

t instances of IMPROVEMENT- Π -IS equal parameter k

host graph with t vertices each vertex $\in \ell$ -vertex Π -ind. subgr. no $(\ell + 1)$ -vertex Π -ind. subgr.

co-nondeterministic compositions

 $k'=\ell(k-1)+1$

t instances of IMPROVEMENT- Π -IS equal parameter k host graph with t vertices each vertex $\in \ell$ -vertex Π -ind. subgr. no $(\ell + 1)$ -vertex Π -ind. subgr.

• Need a host graph!

$\begin{array}{l} \Pi \text{-} INDUCED \hspace{0.1 cm} SUBGRAPH \\ \text{co-nondeterministic compositions} \end{array}$

- Need a host graph!
 - Crucial property: $\ell = t^{o(1)}$.

- Need a host graph!
 - Crucial property: $\ell = t^{o(1)}$.
- As in [Kratsch, SODA 2012]: use co-nondeterminism!

- Need a host graph!
 - Crucial property: $\ell = t^{o(1)}$.
- As in [Kratsch, SODA 2012]: use co-nondeterminism!
 - One catch: need proof of existence.

- Need a host graph!
 - Crucial property: $\ell = t^{o(1)}$.
- As in [Kratsch, SODA 2012]: use co-nondeterminism!
 - One catch: need proof of existence.
- Solution: Erdős-Hajnal property.

- Need a host graph!
 - Crucial property: $\ell = t^{o(1)}$.
- As in [Kratsch, SODA 2012]: use co-nondeterminism!
 - One catch: need proof of existence.
- Solution: Erdős-Hajnal property.

Erdős-Hajnal conjecture

For any (not cofinite) hereditary graph property Π , there exists $\varepsilon = \varepsilon(\Pi)$, such that any $G \in \Pi$ has an independent set or a clique of size n^{ε} .

- Need a host graph!
 - Crucial property: $\ell = t^{o(1)}$.
- As in [Kratsch, SODA 2012]: use co-nondeterminism!
 - One catch: need proof of existence.
- Solution: Erdős-Hajnal property.

Erdős-Hajnal conjecture

For any (not cofinite) hereditary graph property Π , there exists $\varepsilon = \varepsilon(\Pi)$, such that any $G \in \Pi$ has an independent set or a clique of size n^{ε} .

• Open, proven for several special classes, such as perfect or $K_{s,s}$ -free graphs.

- Need a host graph!
 - Crucial property: $\ell = t^{o(1)}$.
- As in [Kratsch, SODA 2012]: use co-nondeterminism!
 - One catch: need proof of existence.
- Solution: Erdős-Hajnal property.

Erdős-Hajnal conjecture

For any (not cofinite) hereditary graph property Π , there exists $\varepsilon = \varepsilon(\Pi)$, such that any $G \in \Pi$ has an independent set or a clique of size n^{ε} .

- Open, proven for several special classes, such as perfect or $K_{s,s}$ -free graphs.
- Π has the Erdős-Hajnal property \Rightarrow good host graph exists and we can find it in coNP-time.

Summary of results

Summarizing, we can prove that:

Theorem

No poly-kernel for Π -INDUCED SUBGRAPH for any non-trivial poly-recognizable hereditary graph class Π that contains all independent sets and cliques, is closed under embedding and has the Erdős-Hajnal property.

Theorem

No poly-kernel for Π -INDUCED SUBGRAPH for any non-trivial poly-recognizable hereditary graph class Π that contains all independent sets and cliques, is closed under embedding and has the Erdős-Hajnal property.

Includes perfect graphs, cographs and permutation graphs.

Theorem

No poly-kernel for Π -INDUCED SUBGRAPH for any non-trivial poly-recognizable hereditary graph class Π that contains all independent sets and cliques, is closed under embedding and has the Erdős-Hajnal property.

Includes perfect graphs, cographs and permutation graphs. Using a few more tricks or by a reduction from RAMSEY:

Theorem

No poly-kernel for Π -INDUCED SUBGRAPH for any non-trivial poly-recognizable hereditary graph class Π that contains all independent sets and cliques, is closed under embedding and has the Erdős-Hajnal property.

Includes perfect graphs, cographs and permutation graphs. Using a few more tricks or by a reduction from ${\rm RAMSEY}$:

Theorem

No poly-kernel for Π -INDUCED SUBGRAPH for any non-trivial poly-recognizable hereditary graph class Π that contains all independent sets, but excludes a certain biclique.

Theorem

No poly-kernel for Π -INDUCED SUBGRAPH for any non-trivial poly-recognizable hereditary graph class Π that contains all independent sets and cliques, is closed under embedding and has the Erdős-Hajnal property.

Includes perfect graphs, cographs and permutation graphs. Using a few more tricks or by a reduction from RAMSEY :

Theorem

No poly-kernel for Π -INDUCED SUBGRAPH for any non-trivial poly-recognizable hereditary graph class Π that contains all independent sets, but excludes a certain biclique.

Includes chordal, interval, unit interval, claw-free and split graphs.

Theorem

No poly-kernel for Π -INDUCED SUBGRAPH for any non-trivial poly-recognizable hereditary graph class Π that contains all independent sets and cliques, is closed under embedding and has the Erdős-Hajnal property.

Includes perfect graphs, cographs and permutation graphs. Using a few more tricks or by a reduction from RAMSEY :

Theorem

No poly-kernel for Π -INDUCED SUBGRAPH for any non-trivial poly-recognizable hereditary graph class Π that contains all independent sets, but excludes a certain biclique.

Includes chordal, interval, unit interval, claw-free and split graphs. Note: excluding a biclique implies the Erdős-Hajnal property.

• We have shown kernelization hardness for most natural FPT-cases of **П**-INDUCED SUBGRAPH.

- We have shown kernelization hardness for most natural FPT-cases of $\Pi\text{-}\mathrm{INDUCED}$ SUBGRAPH.
- Can we obtain a general lower bound for all FPT-cases of **Π**-INDUCED SUBGRAPH?

- \bullet We have shown kernelization hardness for most natural FPT-cases of $\Pi\mathchar`-INDUCED$ SUBGRAPH.
- Can we obtain a general lower bound for all FPT-cases of Π -INDUCED SUBGRAPH?
- Interesting case: AT-free graphs.

- \bullet We have shown kernelization hardness for most natural FPT-cases of $\Pi\mathchar`-INDUCED$ SUBGRAPH.
- Can we obtain a general lower bound for all FPT-cases of Π -INDUCED SUBGRAPH?
- Interesting case: AT-free graphs.
 - Closed under embedding, so would fall under the first theorem...
- \bullet We have shown kernelization hardness for most natural FPT-cases of $\Pi\mathchar`-INDUCED$ SUBGRAPH.
- Can we obtain a general lower bound for all FPT-cases of Π -INDUCED SUBGRAPH?
- Interesting case: AT-free graphs.
 - Closed under embedding, so would fall under the first theorem...
 - if only the Erdős-Hajnal property was proven for them!

- \bullet We have shown kernelization hardness for most natural FPT-cases of $\Pi\mathchar`-INDUCED$ SUBGRAPH.
- Can we obtain a general lower bound for all FPT-cases of Π -INDUCED SUBGRAPH?
- Interesting case: AT-free graphs.
 - Closed under embedding, so would fall under the first theorem...
 - if only the Erdős-Hajnal property was proven for them!
- Big open problem: prove Erdős-Hajnal conjecture.

Thank you

Questions?

Tikz faces based on a code by Raoul Kessels, http://www.texample.net/tikz/examples/emoticons/, under Creative Commons Attribution 2.5 license (CC BY 2.5)