A Fast Algorithm for Permutation Pattern Matching Based on Alternating Runs

Marie-Louise Bruner and Martin Lackner

Vienna University of Technology

July 6, 2012
SWAT 2012, Helsinki

Permutation patterns

A permutation T (the text) contains P as a pattern if we can find a subsequence of T that is order-isomorphic to P.

Permutation patterns

A permutation T (the text) contains P as a pattern if we can find a subsequence of T that is order-isomorphic to P.

Does 53142 contain 231 as a pattern?

Permutation patterns

A permutation T (the text) contains P as a pattern if we can find a subsequence of T that is order-isomorphic to P.

Does 53142 contain 231 as a pattern?
(342 is a matching)

Permutation patterns

A permutation T (the text) contains P as a pattern if we can find a subsequence of T that is order-isomorphic to P.

Does 53142 contain 231 as a pattern?
(342 is a matching)
Does 53142 contain 123 as a pattern?

Permutation patterns

A permutation T (the text) contains P as a pattern if we can find a subsequence of T that is order-isomorphic to P.

Does 53142 contain 231 as a pattern?
(342 is a matching)
Does 53142 contain 123 as a pattern?

Permutation patterns

A permutation T (the text) contains P as a pattern if we can find a subsequence of T that is order-isomorphic to P.

Does 53142 contain 231 as a pattern?
(342 is a matching)
Does 53142 contain 123 as a pattern?

Does 53142 contain 4231 as a pattern?

Permutation patterns

A permutation T (the text) contains P as a pattern if we can find a subsequence of T that is order-isomorphic to P.

Does 53142 contain 231 as a pattern?
(342 is a matching)
Does 53142 contain 123 as a pattern?

Does 53142 contain 4231 as a pattern?
(5342 is a matching)

Enumerative combinatorics

Theorem

The n-permutations that do not contain the pattern 123 are counted by the n-th Catalan number.

Enumerative combinatorics

Theorem

The n-permutations that do not contain the pattern 123 are counted by the n-th Catalan number.
The same holds for every other pattern of length 3.

Enumerative combinatorics

Theorem

The n-permutations that do not contain the pattern 123 are counted by the n-th Catalan number.
The same holds for every other pattern of length 3.
Stanley-Wilf conjecture, shown by Marcus and Tardos (2004)
For every permutation P there is a constant c such that the number of n-permutations that do not contain P as a pattern is bounded by c^{n}.

Permutation Pattern Matching

Permutation Pattern Matching (PPM)
Instance: A permutation T of length n (the text) and a permutation P of length $k \leq n$ (the pattern).
Question: Is there a matching of P into T ?

Permutation Pattern Matching

```
Permutation Pattern Matching (PPM)
Instance: A permutation T of length n (the
    text) and a permutation P of length
    k\leqn (the pattern).
Question: Is there a matching of P into T}
```

1993 (Bose, Buss, Lubiw): PPM is in general NP-complete.

Tractable cases of PPM

- Pattern avoids both 3142 and 2413
$\mathcal{O}\left(k n^{4}\right)$

Tractable cases of PPM

- Pattern avoids both 3142 and 2413
- $P=12 \ldots k$ or $P=k \ldots 21$

Tractable cases of PPM

- Pattern avoids both 3142 and 2413
- $P=12 \ldots k$ or $P=k \ldots 21$
- P has length at most 4

Tractable cases of PPM

- Pattern avoids both 3142 and 2413
- $P=12 \ldots k$ or $P=k \ldots 21$
- P has length at most 4
- Pattern and Text avoid 321
$\mathcal{O}\left(k n^{4}\right)$
$\mathcal{O}(n \log \log n)$
$\mathcal{O}(n \log n)$
$\mathcal{O}\left(k^{2} n^{6}\right)$

The general case

Anything better than the
$\mathcal{O}^{*}\left(2^{n}\right)$
runtime of brute-force search?

Parameterized Complexity Theory

Idea: confine the combinatorial explosion to a parameter of the input

Parameterized Complexity Theory

Idea: confine the combinatorial explosion to a parameter of the input

Fixed-parameter tractability

A problem is fixed-parameter tractable with respect to a parameter k if there is a computable function f and an integer c such that there is an algorithm solving the problem in time $\mathcal{O}\left(f(k) \cdot|I|^{c}\right)$.

Alternating runs

1812 (up), 4 (down), 711 (up), 632 (down), 9 (up), 5 (down), 10 (up)

Alternating runs

1812 (up), 4 (down), 711 (up), 632 (down), 9 (up), 5 (down), 10 (up)

Notation

$\operatorname{run}(\pi) \ldots$ the number of alternating runs in π,

The alternating run algorithm

- Matching functions:

Reduce the search space

- Dynamic programming algorithm:

Checks for every matching function whether there is a compatible matching

Matching functions

Pattern P

\downarrow matching function \downarrow

Matching functions - an example

Matching functions - an example

The algorithm - finding a matching

Text T

The algorithm - finding a matching

Text T

The algorithm - finding a matching

Text T

The algorithm - finding a matching

Text T

The algorithm - finding a matching

Text T

Runtime

Matching functions:
Dynamic programming algorithm:
$\sqrt{2}^{r u n(T)}$
$\mathcal{O}^{*}\left(1.2611^{\text {run }(T)}\right)$

Runtime

Matching functions:
Dynamic programming algorithm:
In total:
$\sqrt{2}^{\text {run }(T)}$
$\mathcal{O}^{*}\left(1.2611^{\text {run }(T)}\right)$ $\mathcal{O}^{*}\left(1.784^{\text {run }(T)}\right)$

Runtime

Matching functions:
Dynamic programming algorithm:
$\mathcal{O}^{*}\left(1.2611^{\text {run }(T)}\right)$
In total: $\mathcal{O}^{*}\left(1.784^{\text {run }(T)}\right)$
\rightarrow This is a fixed-parameter tractable (FPT) algorithm, i.e. a runtime of $f(k) \cdot n^{c}$.

Runtime

Matching functions:
Dynamic programming algorithm:
In total: $\mathcal{O}^{*}\left(1.784^{\text {run }(T)}\right)$
\rightarrow This is a fixed-parameter tractable (FPT) algorithm, i.e. a runtime of $f(k) \cdot n^{c}$.

Since $\operatorname{run}(T) \leq n$, we also obtain
$\mathcal{O}^{*}\left(1.784^{n}\right)$

Alternating runs in the pattern run (P)

$$
\begin{array}{ll}
\mathcal{O}^{*}\left(1.784^{\operatorname{run}(T)}\right) & \text { FPT, i.e. } f(k) \cdot n^{c} \\
\mathcal{O}^{*}\left(\left(\frac{n^{2}}{2 \operatorname{run}(P)}\right)^{\text {run }(P)}\right) & \text { XP, i.e. } n^{f(k)}
\end{array}
$$

Alternating runs in the pattern run (P)

$$
\begin{array}{ll}
\mathcal{O}^{*}\left(1.784^{\operatorname{run}(T)}\right) & \text { FPT, i.e. } f(k) \cdot n^{c} \\
\mathcal{O}^{*}\left(\left(\frac{n^{2}}{2 \operatorname{run}(P)}\right)^{\operatorname{run}(P)}\right) & \text { XP, i.e. } n^{f(k)}
\end{array}
$$

no FPT result possible (W[1]-hardness)

Conclusion

Main results

- $\mathcal{O}^{*}\left(1.784^{\text {run }(T)}\right) \rightarrow$ FPT result
- $\mathcal{O}^{*}\left(1.784^{n}\right) \rightarrow$ fastest general algorithm
- W[1]-hardness for run (P)

Conclusion

Main results

- $\mathcal{O}^{*}\left(1.784^{\text {run }(T)}\right) \rightarrow$ FPT result
- $\mathcal{O}^{*}\left(1.784^{n}\right) \rightarrow$ fastest general algorithm
- W[1]-hardness for run (P)

Future work

- PPM parameterized by some other parameter of P ? By $k=|P|$?

Conclusion

Main results

- $\mathcal{O}^{*}\left(1.784^{\text {run }(T)}\right) \rightarrow$ FPT result
- $\mathcal{O}^{*}\left(1.784^{n}\right) \rightarrow$ fastest general algorithm
- W[1]-hardness for run (P)

Future work

- PPM parameterized by some other parameter of P ? By $k=|P|$?
- Kernelization results

Conclusion

Main results

- $\mathcal{O}^{*}\left(1.784^{\text {run }(T)}\right) \rightarrow$ FPT result
- $\mathcal{O}^{*}\left(1.784^{n}\right) \rightarrow$ fastest general algorithm
- W[1]-hardness for run (P)

Future work

- PPM parameterized by some other parameter of P ? By $k=|P|$?
- Kernelization results
- Other permutation statistics of the text?

