A single exponential FPT algorithm FOR THE K_{4}-MINOR COVER PROBLEM

Eunjung Kim

CNRS - LAMSADE, Paris, France

Joint work with
Christophe Paul (CNRS - LIRMm, FRANCE
Geevarghese Philip (MPI, GERMANY)

$$
\text { July 4, } 2012
$$

Parameterized K_{4}-Minor Cover

Given a graph $G=(V, E)$ and an integer k as parameter,

- at most k vertices $S \subseteq V$ s.t $G[V \backslash S]$ is K_{4}-minor free ?

Parameterized K_{4}-Minor Cover
(a.k.a. Parameterized Treewidth-two Vertex Deletion)

Given a graph $G=(V, E)$ and an integer k as parameter,

- at most k vertices $S \subseteq V$ s.t $G[V \backslash S]$ is K_{4}-minor free?
- at most k vertices $S \subseteq V$ s.t $\operatorname{tw}(G[V \backslash S]) \leqslant 2$?

Parameterized K_{4}-Minor Cover
(a.k.a. Parameterized Treewidth-two Vertex Deletion)

Given a graph $G=(V, E)$ and an integer k as parameter,

- at most k vertices $S \subseteq V$ s.t $G[V \backslash S]$ is K_{4}-minor free?
- at most k vertices $S \subseteq V$ s.t $\operatorname{tw}(G[V \backslash S]) \leqslant 2$?

Observations:

1. Vertex Cover $\equiv K_{2}$-Minor Cover
\equiv Treewidth-Zero Vertex Deletion
2. Feedback Vertex Set

$$
\begin{aligned}
& \equiv K_{3} \text {-Minor Cover } \\
& \equiv \text { Treewidth-one Vertex Deletion }
\end{aligned}
$$

More generally,
How fast can we solve Treewidth- t Vertex Deletion?

Known RESULTS (*when we subaitted)

1. Parameterized K_{4}-Minor Cover is FPT
(by the Roberston and Seymour' graph minor theorem or by Courcelle's theorem)
2. Best algorithm runs in $2^{O(k \log k)} \cdot n^{O(1)}$ [Fomin et al.'11]
3. $2^{O(k)} \cdot n^{O(1)}$-algorithm when for $t=0,1$.
4. No hope for a $2^{o(k)} \cdot n^{O(1)}$ algorithm [Chen et al.'05]

Known RESULTS (*when we subaitted)

1. Parameterized K_{4}-Minor Cover is FPT (by the Roberston and Seymour' graph minor theorem or by Courcelle's theorem)
2. Best algorithm runs in $2^{O(k \log k)} \cdot n^{O(1)}$ [Fomin et al.'11]
3. $2^{O(k)} \cdot n^{O(1)}$-algorithm when for $t=0,1$.
4. No hope for a $2^{o(k)} \cdot n^{O(1)}$ algorithm [Chen et al.'05]

Our Result

There exists an algorithm that solves the Parameterized K_{4}-Minor Cover problem in time $2^{O(k)} \cdot n^{O(1)}$.

Known RESULTS (*when we submitted)

1. Parameterized K_{4}-Minor Cover is FPT (by the Roberston and Seymour' graph minor theorem or by Courcelle's theorem)
2. Best algorithm runs in $2^{O(k \log k)} \cdot n^{O(1)}$ [Fomin et al.'11]
3. $2^{O(k)} \cdot n^{O(1)}$-algorithm when for $t=0,1$.
4. No hope for a $2^{o(k)} \cdot n^{O(1)}$ algorithm [Chen et al.'05]

Our Result

There exists an algorithm that solves the Parameterized K_{4}-Minor Cover problem in time $2^{O(k)} \cdot n^{O(1)}$.

Known Results (*now, a few months later...)

1. Treewidth- t Vertex Deletion in $2^{O(k)} \cdot n \log n^{2}$ [Fomin et al.'12], in $2^{O(k)} \cdot n^{2}$ [Kim et al.'12]
2. Polynomial kernel [Fomin et al.'12]

Iterative compression

allows us to focus on Disjoint- K_{4}-Minor Cover

- Given $G=(V, E)$, a K_{4}-Minor Cover S of size $k+1$
- Compute (if it exists) a K_{4}-Minor Cover S^{\prime} of size k such that $S \cap S^{\prime}=\emptyset$

Iterative compression

allows us to focus on Disjoint- K_{4}-Minor Cover

- Given $G=(V, E)$, a K_{4}-Minor Cover S of size $k+1$
- Compute (if it exists) a K_{4}-Minor Cover S^{\prime} of size k such that $S \cap S^{\prime}=\emptyset$

Folklore: If Disjoint- K_{4}-Minor Cover is single-exponential, Parameterized K_{4}-Minor Cover is single-exponential.

Iterative compression

allows us to focus on Disjoint- K $_{4}$-Minor Cover

- Given $G=(V, E)$, a K_{4}-Minor Cover S of size $k+1$
- Compute (if it exists) a K_{4}-Minor Cover S^{\prime} of size k such that $S \cap S^{\prime}=\emptyset$

Folklore: If Disjoint- K_{4}-Minor Cover is single-exponential, Parameterized K_{4}-Minor Cover is single-exponential.

From the additional S, we can retrieve rich structural information.

Iterative compression

allows us to focus on Disjoint- K_{4}-Minor Cover

- Given $G=(V, E)$, a K_{4}-Minor Cover S of size $k+1$
- Compute (if it exists) a K_{4}-Minor Cover S^{\prime} of size k such that $S \cap S^{\prime}=\emptyset$

Folklore: If Disjoint- K_{4}-Minor Cover is single-exponential, Parameterized K_{4}-Minor Cover is single-exponential.

From the additional S, we can retrieve rich structural information.

Our algorithm for Disjoint- K_{4}-Minor Cover can be viewed as a generalization of [Chen et al.08] for Disjoint-FVS.

Introduction

Disjoint-FVS: intuition

Disjoint- K_{4}-Minor Cover
Branching Rules
SP-decomposition
Reduction Rules

Algorithm for the Disjoint- K_{4}-Minor Cover

Disjoint-Feedback Vertex Set
(Disjoint-FVS)

- Given $G=(V, E)$, a feedback vertex set S of size $k+1$
- Compute (if it exists) a feedback vertex set S^{\prime} size k such that $S \cap S^{\prime}=\emptyset$.

Disjoint-Feedback Vertex Set

- Given $G=(V, E)$, a feedback vertex set S of size $k+1$
- Compute (if it exists) a feedback vertex set S^{\prime} size k such that $S \cap S^{\prime}=\emptyset$.
[Chen et al.08] We use
- branching and reduction rules
- a measure function to analyze the time complexity

$$
\mu=k+\# c c(G[S])
$$

Red. Rule 1: Remove leaf $x \in V \backslash S$ if $N(x) \cap S=\emptyset$

Red. Rule 1: Remove leaf $x \in V \backslash S$ if $N(x) \cap S=\emptyset$

Red. Rule 1: Remove leaf $x \in V \backslash S$ if $N(x) \cap S=\emptyset$
Red. Rule 2: Bypass leaf $x \in V \backslash S$ if $d(x)=2,|N(x) \cap S|=1$

Red. Rule 1: Remove leaf $x \in V \backslash S$ if $N(x) \cap S=\emptyset$
Red. Rule 2: Bypass leaf $x \in V \backslash S$ if $d(x)=2,|N(x) \cap S|=1$

Red. Rule 1: Remove leaf $x \in V \backslash S$ if $N(x) \cap S=\emptyset$
Red. Rule 2: Bypass leaf $x \in V \backslash S$ if $d(x)=2,|N(x) \cap S|=1$
Red. Rule 3: Remove every vertex $x \in V \backslash S$ with at least 2 neighbours in some connect. comp. C of $G[S]$ and decrease k by 1

Red. Rule 1: Remove leaf $x \in V \backslash S$ if $N(x) \cap S=\emptyset$
Red. Rule 2: Bypass leaf $x \in V \backslash S$ if $d(x)=2,|N(x) \cap S|=1$
Red. Rule 3: Remove every vertex $x \in V \backslash S$ with at least 2 neighbours in some connect. comp. C of $G[S]$ and decrease k by 1

Red. Rule 1: Remove leaf $x \in V \backslash S$ if $N(x) \cap S=\emptyset$
Red. Rule 2: Bypass leaf $x \in V \backslash S$ if $d(x)=2,|N(x) \cap S|=1$
Red. Rule 3: Remove every vertex $x \in V \backslash S$ with at least 2 neighbours in some connect. comp. C of $G[S]$ and decrease k by 1

Red. Rule 1: Remove leaf $x \in V \backslash S$ if $N(x) \cap S=\emptyset$
Red. Rule 2: Bypass leaf $x \in V \backslash S$ if $d(x)=2,|N(x) \cap S|=1$
Red. Rule 3: Remove every vertex $x \in V \backslash S$ with at least 2 neighbours in some connect. comp. Cof $G[S]$ and decrease k by 1

Red. Rule 1: Remove leaf $x \in V \backslash S$ if $N(x) \cap S=\emptyset$
Red. Rule 2: Bypass leaf $x \in V \backslash S$ if $d(x)=2,|N(x) \cap S|=1$
Red. Rule 3: Remove every vertex $x \in V \backslash S$ with at least 2 neighbours in some connect. comp. C of $G[S]$ and decrease k by 1

Branching Rule: If $x \in V \backslash S$ has two neighbours in two different connected components of $G[S]$, then branch on

- $(G-\{x\}, S, k-1)$

Red. Rule 1: Remove leaf $x \in V \backslash S$ if $N(x) \cap S=\emptyset$
Red. Rule 2: Bypass leaf $x \in V \backslash S$ if $d(x)=2,|N(x) \cap S|=1$
Red. Rule 3: Remove every vertex $x \in V \backslash S$ with at least 2 neighbours in some connect. comp. C of $G[S]$ and decrease k by 1

Branching Rule: If $x \in V \backslash S$ has two neighbours in two different connected components of $G[S]$, then branch on

- $(G-\{x\}, S, k-1)$

(2) \%

Red. Rule 1: Remove leaf $x \in V \backslash S$ if $N(x) \cap S=\emptyset$
Red. Rule 2: Bypass leaf $x \in V \backslash S$ if $d(x)=2,|N(x) \cap S|=1$
Red. Rule 3: Remove every vertex $x \in V \backslash S$ with at least 2 neighbours in some connect. comp. C of $G[S]$ and decrease k by 1

Branching Rule: If $x \in V \backslash S$ has two neighbours in two different connected components of $G[S]$, then branch on

- $(G-\{x\}, S, k-1)$
- $(G, S \cup\{x\}, k)$
$\Rightarrow \mu$ decreases
$\Rightarrow \mu$ decreases

Ingredients of [Chen et al.08]

- Branching rules AND appropriate measure function μ.
- Reduction rules to bound the branching degree.
- An appropriate tree-like structure to process $G-S$.
- In the search tree, leaf instances are not hard.

Ingredients of [Chen et al.08]

- Branching rules AND appropriate measure function μ.
- Reduction rules to bound the branching degree.
- An appropriate tree-like structure to process $G-S$.
- In the search tree, leaf instances are not hard.

For the Disjoint- K_{4}-Minor Cover we have

- adapted the branching rules and introduce a new measure μ
- adapted the reduction rules (extended bypassing + chandelier + trivial)
- extended SP-decomposition for treewidth-2 graphs.
- in the search tree, a leaf instance is Vertex Cover on circle graphs (polytime).

Branching Rules (1)

Let (G, S, k) be an instance of Disjoint- K_{4}-Minor Cover.

Branching Rule 1: If $X \subseteq V \backslash S$ is a set such that $G[S \cup X]$ contains a K_{4}-subdivision, then

Branching Rules (1)

Let (G, S, k) be an instance of Disjoint- K_{4}-Minor Cover.

Branching Rule 1: If $X \subseteq V \backslash S$ is a set such that $G[S \cup X]$ contains a K_{4}-subdivision, then

- we must delete one of X.

Branching Rules (2)

Branching Rules (2)
Let (G, S, k) be an instance of Disjoint- K_{4}-Minor Cover.

Branching Rule 2: If $X \subseteq V \backslash S$ is an s_{1}, s_{2}-path and $\left\{s_{1}, s_{2}\right\} \subseteq N_{S}(X)$ with $\operatorname{cc}\left(s_{1}\right) \neq \operatorname{ccs}\left(s_{2}\right)$, then,

Let (G, S, k) be an instance of Disjoint- K_{4}-Minor Cover.

Branching Rule 2: If $X \subseteq V \backslash S$ is an s_{1}, s_{2}-path and $\left\{s_{1}, s_{2}\right\} \subseteq N_{S}(X)$ with $\operatorname{cc}\left(s_{1}\right) \neq \operatorname{ccs}\left(s_{2}\right)$, then,

- either we delete one of X
- or X is added to S (no vertex deleted)

Let (G, S, k) be an instance of Disjoint- K_{4}-Minor Cover.

Branching Rule 3: If $X \subseteq V \backslash S$ is an s_{1}, s_{2}-path and $\left\{s_{1}, s_{2}\right\} \subseteq N_{S}(X)$ with $c c_{S}\left(s_{1}\right)=c c_{S}\left(s_{2}\right)$ and $b c_{S}\left(s_{1}\right) \neq b c_{S}\left(s_{2}\right)$, then,

- either we delete one of X
- or X is added to S (no vertex deleted)

Branching Rules (3)

Let (G, S, k) be an instance of Disjoint- K_{4}-Minor Cover.

Branching Rule 3: If $X \subseteq V \backslash S$ is an s_{1}, s_{2}-path and $\left\{s_{1}, s_{2}\right\} \subseteq N_{S}(X)$ with $c c_{S}\left(s_{1}\right)=c c_{S}\left(s_{2}\right)$ and $b c_{S}\left(s_{1}\right) \neq b c_{S}\left(s_{2}\right)$, then,

- either we delete one of X
- or X is added to S (no vertex deleted)

Claim: $\mu=c_{1} \times k+c_{1} \times \# c c(G[S])+\# b c(G[S])$ is decreasing

Branching Rules (3)

Let (G, S, k) be an instance of Disjoint- K_{4}-Minor Cover.

Branching Rule 3: If $X \subseteq V \backslash S$ is an s_{1}, s_{2}-path and $\left\{s_{1}, s_{2}\right\} \subseteq N_{S}(X)$ with $c c_{S}\left(s_{1}\right)=c c_{S}\left(s_{2}\right)$ and $b c_{S}\left(s_{1}\right) \neq b c_{S}\left(s_{2}\right)$, then,

- either we delete one of X
- or X is added to S (no vertex deleted)

Claim: $\mu=c_{1} \times k+c_{1} \times \# c c(G[S])+\# b c(G[S])$ is decreasing

- c_{1} depends on the maximum size of the sets X on which the branching rules is applied

Suppose the branching rules have been exhaustively applied to all connected component (no matter how large $|X|$ might be).

Suppose the branching rules have been exhaustively applied to all connected component (no matter how large $|X|$ might be).

Then the current instance has a nice structure.

Suppose the branching rules have been exhaustively applied to all connected component (no matter how large $|X|$ might be).

Then the current instance has a nice structure.

independent instance can be solved in poly-time

How to bound the size of X to branch on?
First, we develop a notion of tree-like structure for K_{4}-minor-free graphs.

How to bound the size of X to branch on?
First, we develop a notion of tree-like structure for K_{4}-minor-free graphs.

Use the fact: A graph is K_{4}-minor free iff
its biconnected components are series-parallel graphs

How to bound the size of X to branch on?
First, we develop a notion of tree-like structure for K_{4}-minor-free graphs.

Use the fact: A graph is K_{4}-minor free iff its biconnected components are series-parallel graphs
extended-SP decomposition

How to bound the size of X to branch on?
First, we develop a notion of tree-like structure for K_{4}-minor-free graphs.

Use the fact: A graph is K_{4}-minor free iff its biconnected components are series-parallel graphs
extended-SP decomposition $=$ block tree

How to bound the size of X to branch on?
First, we develop a notion of tree-like structure for K_{4}-minor-free graphs.

Use the fact: A graph is K_{4}-minor free iff its biconnected components are series-parallel graphs
extended-SP decomposition $=$ block tree + SP-tree on every block

Reduction Rules: trivial

Reduction rule: Components NOT participating any K_{4}-subdivision is removed.

Reduction Rules: trivial

Reduction rule: Components NOT participating any K_{4}-subdivision is removed.

Reduction Rules: trivial

Reduction rule: Components NOT participating any K_{4}-subdivision is removed.

Reduction rule: Bypass degree-2 vertices and remove multiple edges.

Reduction Rules: Chandelier

Reduction Rules: Chandelier

Reduction Rules: Chandelier

Reduction Rules: extended bypass-1

Reduction Rules: Chandelier

Reduction Rules: extended bypass-1
when connected X s.t. $X \cap S=\emptyset$ has a separator of size 2

Reduction Rules: extended bypass-2
Let (G, S, k) be an instance of Disjoint- K_{4}-Minor Cover
Disjoint Protrusion Rule: Let X be a t-protrusion of G such that

$$
X \cap S=\emptyset \text { and }|X|>\gamma(t)
$$

Then,

Reduction Rules: extended bypass-2
Let (G, S, k) be an instance of Disjoint- K_{4}-Minor Cover
Disjoint Protrusion Rule: Let X be a t-protrusion of G such that

$$
X \cap S=\emptyset \text { and }|X|>\gamma(t)
$$

Then, replace X with a t-protrusion X^{\prime} of smaller size.

Introduction

Disjoint-FVS: intuition

Disjoint- K_{4}-Minor Cover
Branching Rules
SP-decomposition
Reduction Rules

Algorithm for the Disjoint- K_{4}-Minor Cover

Algorithm outline

1. Apply reduction rules and branching rules on every set $\{x\}$ (with $x \in V \backslash S$)

Algorithm outline

1. Apply reduction rules and branching rules on every set $\{x\}$ (with $x \in V \backslash S$)

Lemma: $|N(v) \cap S| \leq 2$ for all $v \in V-S$.

Algorithm outline

1. Apply reduction rules and branching rules on every set $\{x\}$ (with $x \in V \backslash S$)

Lemma: $|N(v) \cap S| \leq 2$ for all $v \in V-S$.
2. Use the extended-SP decomposition to apply the branching rules and reduction rules in a bottom-up manner.

Algorithm outline

1. Apply reduction rules and branching rules on every set $\{x\}$ (with $x \in V \backslash S$)

Lemma: $|N(v) \cap S| \leq 2$ for all $v \in V-S$.
2. Use the extended-SP decomposition to apply the branching rules and reduction rules in a bottom-up manner.

Branch-Or-Reduce Lemma: Either one of the branching rules apply on $|X| \leq c_{1}$, or extended bypassing rules apply. Otherwise you're at a leaf instance.

1. Apply reduction rules and branching rules on every set $\{x\}$ (with $x \in V \backslash S$)
Lemma: $|N(v) \cap S| \leq 2$ for all $v \in V-S$.
2. Use the extended-SP decomposition to apply the branching rules and reduction rules in a bottom-up manner.

Branch-or-Reduce Lemma: Either one of the branching rules apply on $|X| \leq c_{1}$, or extended bypassing rules apply. Otherwise you're at a leaf instance.
3. Solve each independent instance in polytime

Theorem: There exists a single-exponential FPT-time algorithm for the K_{4}-Minor Cover problem.

Conclusion

Theorem: There exists a single-exponential FPT-time algorithm for the K_{4}-Minor Cover problem.

Open question:

1. Due to recent developement, we have $2^{O(k)} \cdot n^{O(1)}$-time algorithm for \mathcal{F}-minor cover problem, for any finite collection \mathcal{F} containing at least one planar graph.

Conclusion

Theorem: There exists a single-exponential FPT-time algorithm for the K_{4}-Minor Cover problem.

Open question:

1. Due to recent developement, we have $2^{O(k)} \cdot n^{O(1)}$-time algorithm for \mathcal{F}-minor cover problem, for any finite collection \mathcal{F} containing at least one planar graph.
2. How about $\mathcal{F}=\left\{K_{5}\right\}$ or $\mathcal{F}=\left\{K_{5}, K_{3,3}\right\}$? Current best is double-exponential i.e. $2^{2^{O(K)}}$.

Conclusion

Theorem: There exists a single-exponential FPT-time algorithm for the K_{4}-Minor Cover problem.

Open question:

1. Due to recent developement, we have $2^{O(k)} \cdot n^{O(1)}$-time algorithm for \mathcal{F}-minor cover problem, for any finite collection \mathcal{F} containing at least one planar graph.
2. How about $\mathcal{F}=\left\{K_{5}\right\}$ or $\mathcal{F}=\left\{K_{5}, K_{3,3}\right\}$? Current best is double-exponential i.e. $2^{2^{O(K)}}$.

Thank you

