A SINGLE EXPONENTIAL FPT ALGORITHM FOR THE K_4 -MINOR COVER PROBLEM

Eunjung Kim

CNRS - LAMSADE, Paris, France

Joint work with

Christophe Paul (CNRS - LIRMM, FRANCE
Geevarghese Philip (MPI, GERMANY)

July 4, 2012

PARAMETERIZED K₄-MINOR COVER

Given a graph G = (V, E) and an integer k as parameter,

▶ at most k vertices $S \subseteq V$ s.t $G[V \setminus S]$ is K_4 -minor free ?

Parameterized K_4 -Minor Cover (a.k.a. Parameterized Treewidth-two Vertex Deletion)

Given a graph G = (V, E) and an integer k as parameter,

- ▶ at most k vertices $S \subseteq V$ s.t $G[V \setminus S]$ is K_4 -minor free ?
- ▶ at most k vertices $S \subseteq V$ s.t $tw(G[V \setminus S]) \leq 2$?

Parameterized K_4 -Minor Cover (a.k.a. Parameterized Treewidth-two Vertex Deletion)

Given a graph G = (V, E) and an integer k as parameter,

- ▶ at most k vertices $S \subseteq V$ s.t $G[V \setminus S]$ is K_4 -minor free ?
- ▶ at most k vertices $S \subseteq V$ s.t $tw(G[V \setminus S]) \leq 2$?

Observations:

- 1. Vertex Cover $\equiv K_2$ -Minor Cover \equiv Treewidth-zero Vertex Deletion
- 2. Feedback Vertex Set

 $\equiv K_3$ -Minor Cover

■ Treewidth-one Vertex Deletion

More generally,

How fast can we solve Treewidth-t Vertex Deletion?

KNOWN RESULTS (*WHEN WE SUBMITTED)

- PARAMETERIZED K₄-MINOR COVER is FPT
 (by the Roberston and Seymour' graph minor theorem or by Courcelle's theorem)
- 2. Best algorithm runs in $2^{O(k \log k)} \cdot n^{O(1)}$ [Fomin et al.'11]
- 3. $2^{O(k)} \cdot n^{O(1)}$ -algorithm when for t = 0, 1.
- 4. No hope for a $2^{o(k)} \cdot n^{O(1)}$ algorithm [Chen et al.'05]

KNOWN RESULTS (*WHEN WE SUBMITTED)

- PARAMETERIZED K₄-MINOR COVER is FPT
 (by the Roberston and Seymour' graph minor theorem or by Courcelle's theorem)
- 2. Best algorithm runs in $2^{O(k \log k)} \cdot n^{O(1)}$ [Fomin et al.'11]
- 3. $2^{O(k)} \cdot n^{O(1)}$ -algorithm when for t = 0, 1.
- 4. No hope for a $2^{o(k)} \cdot n^{O(1)}$ algorithm [Chen et al.'05]

Our result

There exists an algorithm that solves the PARAMETERIZED K_4 -MINOR COVER problem in time $2^{O(k)} \cdot n^{O(1)}$.

KNOWN RESULTS (*WHEN WE SUBMITTED)

- PARAMETERIZED K₄-MINOR COVER is FPT
 (by the Roberston and Seymour' graph minor theorem or by Courcelle's theorem)
- 2. Best algorithm runs in $2^{O(k \log k)} \cdot n^{O(1)}$ [Fomin et al.'11]
- 3. $2^{O(k)} \cdot n^{O(1)}$ -algorithm when for t = 0, 1.
- 4. No hope for a $2^{o(k)} \cdot n^{O(1)}$ algorithm [Chen et al.'05]

Our result

There exists an algorithm that solves the PARAMETERIZED K_4 -MINOR COVER problem in time $2^{O(k)} \cdot n^{O(1)}$.

KNOWN RESULTS (*NOW, A FEW MONTHS LATER...)

- 1. TREEWIDTH-t VERTEX DELETION in $2^{O(k)} \cdot n \log n^2$ [Fomin et al.'12], in $2^{O(k)} \cdot n^2$ [Kim et al.'12]
- 2. Polynomial kernel [Fomin et al.'12]

allows us to focus on DISJOINT- K_4 -MINOR COVER

- ▶ Given G = (V, E), a K_4 -MINOR COVER S of size k + 1
- ► Compute (if it exists) a K_4 -MINOR COVER S' of size k such that $S \cap S' = \emptyset$

allows us to focus on DISJOINT- K_4 -MINOR COVER

- ▶ Given G = (V, E), a K_4 -MINOR COVER S of size k + 1
- ▶ Compute (if it exists) a K_4 -MINOR COVER S' of size k such that $S \cap S' = \emptyset$

Folklore: If DISJOINT- K_4 -MINOR COVER is single-exponential, PARAMETERIZED K_4 -MINOR COVER is single-exponential.

allows us to focus on DISJOINT- K_4 -MINOR COVER

- ▶ Given G = (V, E), a K_4 -MINOR COVER S of size k + 1
- ▶ Compute (if it exists) a K_4 -MINOR COVER S' of size k such that $S \cap S' = \emptyset$

Folklore: If DISJOINT- K_4 -MINOR COVER is single-exponential, PARAMETERIZED K_4 -MINOR COVER is single-exponential.

From the additional S, we can retrieve rich structural information.

allows us to focus on Disjoint- K_4 -Minor Cover

- ▶ Given G = (V, E), a K_4 -MINOR COVER S of size k + 1
- ► Compute (if it exists) a K_4 -MINOR COVER S' of size k such that $S \cap S' = \emptyset$

Folklore: If DISJOINT- K_4 -MINOR COVER is single-exponential, PARAMETERIZED K_4 -MINOR COVER is single-exponential.

From the additional S, we can retrieve rich structural information.

Our algorithm for DISJOINT- K_4 -MINOR COVER can be viewed as a generalization of [Chen et al.08] for DISJOINT-FVS.

Introduction

DISJOINT-FVS: intuition

DISJOINT-*K*₄-MINOR COVER
Branching Rules
SP-decomposition
Reduction Rules

Algorithm for the DISJOINT-K4-MINOR COVER

DISJOINT-FEEDBACK VERTEX SET

(DISJOINT-FVS)

- ▶ Given G = (V, E), a feedback vertex set S of size k + 1
- ► Compute (if it exists) a feedback vertex set S' size k such that $S \cap S' = \emptyset$.

- ▶ Given G = (V, E), a feedback vertex set S of size k + 1
- ► Compute (if it exists) a feedback vertex set S' size k such that $S \cap S' = \emptyset$.

[Chen et al.08] We use

- branching and reduction rules
- a measure function to analyze the time complexity

$$\mu = k + \#cc(G[S])$$

Skip example

Red. Rule 1: Remove leaf $x \in V \setminus S$ if $N(x) \cap S = \emptyset$

Red. Rule 1: Remove leaf $x \in V \setminus S$ if $N(x) \cap S = \emptyset$

Red. Rule 2: Bypass leaf $x \in V \setminus S$ if d(x) = 2, $|N(x) \cap S| = 1$

Red. Rule 2: Bypass leaf $x \in V \setminus S$ if d(x) = 2, $|N(x) \cap S| = 1$

Red. Rule 2: Bypass leaf $x \in V \setminus S$ if d(x) = 2, $|N(x) \cap S| = 1$

Red. Rule 2: Bypass leaf $x \in V \setminus S$ if d(x) = 2, $|N(x) \cap S| = 1$

Red. Rule 2: Bypass leaf $x \in V \setminus S$ if d(x) = 2, $|N(x) \cap S| = 1$

Red. Rule 2: Bypass leaf $x \in V \setminus S$ if d(x) = 2, $|N(x) \cap S| = 1$

Red. Rule 2: Bypass leaf $x \in V \setminus S$ if d(x) = 2, $|N(x) \cap S| = 1$

Red. Rule 3: Remove every vertex $x \in V \setminus S$ with at least 2 neighbours in some connect. comp. C of G[S] and decrease k by 1

Branching Rule: If $x \in V \setminus S$ has two neighbours in two different connected components of G[S], then branch on

•
$$(G - \{x\}, S, k - 1)$$
 $\Rightarrow \mu$ decreases

Red. Rule 2: Bypass leaf $x \in V \setminus S$ if d(x) = 2, $|N(x) \cap S| = 1$

Red. Rule 3: Remove every vertex $x \in V \setminus S$ with at least 2 neighbours in some connect. comp. C of G[S] and decrease k by 1

Branching Rule: If $x \in V \setminus S$ has two neighbours in two different connected components of G[S], then branch on

▶
$$(G - \{x\}, S, k - 1)$$

 $\Rightarrow \mu$ decreases

Red. Rule 2: Bypass leaf $x \in V \setminus S$ if d(x) = 2, $|N(x) \cap S| = 1$

Red. Rule 3: Remove every vertex $x \in V \setminus S$ with at least 2 neighbours in some connect. comp. C of G[S] and decrease k by 1

Branching Rule: If $x \in V \setminus S$ has two neighbours in two different connected components of G[S], then branch on

▶
$$(G - \{x\}, S, k - 1)$$

$$\Rightarrow \mu$$
 decreases

$$\blacktriangleright$$
 $(G, S \cup \{x\}, k)$

$$\Rightarrow \mu$$
 decreases

Ingredients of [Chen et al.08]

- ▶ Branching rules AND appropriate measure function μ .
- Reduction rules to bound the branching degree.
- \blacktriangleright An appropriate tree-like structure to process G-S.
- ▶ In the search tree, leaf instances are not hard.

Ingredients of [Chen et al.08]

- ▶ Branching rules AND appropriate measure function μ .
- Reduction rules to bound the branching degree.
- ▶ An appropriate tree-like structure to process G S.
- ▶ In the search tree, leaf instances are not hard.

For the DISJOINT- K_4 -MINOR COVER we have

- lacktriangle adapted the branching rules and introduce a new measure μ
- adapted the reduction rules (extended bypassing + chandelier + trivial)
- extended SP-decomposition for treewidth-2 graphs.
- ▶ in the search tree, a leaf instance is VERTEX COVER on circle graphs (polytime).

Branching Rules (1)

Let (G, S, k) be an instance of DISJOINT- K_4 -MINOR COVER.

Branching Rule 1: If $X \subseteq V \setminus S$ is a set such that $G[S \cup X]$ contains a K_4 -subdivision, then

Branching Rules (1)

Let (G, S, k) be an instance of DISJOINT- K_4 -MINOR COVER.

Branching Rule 1: If $X \subseteq V \setminus S$ is a set such that $G[S \cup X]$ contains a K_4 -subdivision, then

we must delete one of X.

Branching Rules (2)

Branching Rules (2)

Let (G, S, k) be an instance of DISJOINT- K_4 -MINOR COVER.

Branching Rule 2: If $X \subseteq V \setminus S$ is an s_1, s_2 -path and $\{s_1, s_2\} \subseteq N_S(X)$ with $cc_S(s_1) \neq cc_S(s_2)$, then,

Branching Rules (2)

Let (G, S, k) be an instance of DISJOINT- K_4 -MINOR COVER.

Branching Rule 2: If $X \subseteq V \setminus S$ is an s_1, s_2 -path and $\{s_1, s_2\} \subseteq N_S(X)$ with $cc_S(s_1) \neq cc_S(s_2)$, then,

- either we delete one of X
- or X is added to S (no vertex deleted)

Branching Rules (3)

Let (G, S, k) be an instance of DISJOINT- K_4 -MINOR COVER.

Branching Rule 3: If $X \subseteq V \setminus S$ is an s_1, s_2 -path and $\{s_1, s_2\} \subseteq N_S(X)$ with $cc_S(s_1) = cc_S(s_2)$ and $bc_S(s_1) \neq bc_S(s_2)$, then,

- either we delete one of X
- or X is added to S (no vertex deleted)

Branching Rules (3)

Let (G, S, k) be an instance of DISJOINT- K_4 -MINOR COVER.

Branching Rule 3: If $X \subseteq V \setminus S$ is an s_1, s_2 -path and $\{s_1, s_2\} \subseteq N_S(X)$ with $cc_S(s_1) = cc_S(s_2)$ and $bc_S(s_1) \neq bc_S(s_2)$, then,

- either we delete one of X
- or X is added to S (no vertex deleted)

Claim: $\mu = c_1 \times k + c_1 \times \#cc(G[S]) + \#bc(G[S])$ is decreasing

Branching Rules (3)

Let (G, S, k) be an instance of DISJOINT- K_4 -MINOR COVER.

Branching Rule 3: If $X \subseteq V \setminus S$ is an s_1, s_2 -path and $\{s_1, s_2\} \subseteq N_S(X)$ with $cc_S(s_1) = cc_S(s_2)$ and $bc_S(s_1) \neq bc_S(s_2)$, then,

- either we delete one of X
- or X is added to S (no vertex deleted)

Claim: $\mu = c_1 \times k + c_1 \times \#cc(G[S]) + \#bc(G[S])$ is decreasing

▶ c₁ depends on the maximum size of the sets X on which the branching rules is applied

Suppose the branching rules have been exhaustively applied to all connected component (no matter how large |X| might be).

Suppose the branching rules have been exhaustively applied to all connected component (no matter how large |X| might be).

Then the current instance has a nice structure.

Suppose the branching rules have been exhaustively applied to all connected component (no matter how large |X| might be).

Then the current instance has a nice structure.

independent instance can be solved in poly-time

Use the fact: A graph is K_4 -minor free iff its biconnected components are series-parallel graphs

Use the fact: A graph is K_4 -minor free iff its biconnected components are series-parallel graphs

extended-SP decomposition

Use the fact: A graph is K_4 -minor free iff its biconnected components are series-parallel graphs

Use the fact: A graph is K_4 -minor free iff its biconnected components are series-parallel graphs

extended-SP decomposition = block tree + SP-tree on every block

REDUCTION RULES: TRIVIAL

Reduction rule: Components NOT participating any K_4 -subdivision is removed.

REDUCTION RULES: TRIVIAL

Reduction rule: Components NOT participating any K_4 -subdivision is removed.

REDUCTION RULES: TRIVIAL

Reduction rule: Components NOT participating any K_4 -subdivision is removed.

Reduction rule: Bypass degree-2 vertices and remove multiple edges.

REDUCTION RULES: EXTENDED BYPASS-1

REDUCTION RULES: EXTENDED BYPASS-1

when connected X s.t. $X \cap S = \emptyset$ has a separator of size 2

REDUCTION RULES: EXTENDED BYPASS-2

Let (G, S, k) be an instance of DISJOINT- K_4 -MINOR COVER

Disjoint Protrusion Rule: Let X be a t-protrusion of G such that $X \cap S = \emptyset$ and $|X| > \gamma(t)$

Then,

REDUCTION RULES: EXTENDED BYPASS-2

Let (G,S,k) be an instance of DISJOINT- K_4 -MINOR COVER Disjoint Protrusion Rule: Let X be a t-protrusion of G such that $X\cap S=\emptyset$ and $|X|>\gamma(t)$

Then, replace X with a t-protrusion X' of smaller size.

Introduction

DISJOINT-FVS: intuition

DISJOINT-*K*₄-MINOR COVER
Branching Rules
SP-decomposition
Reduction Rules

Algorithm for the DISJOINT-K4-MINOR COVER

1. Apply reduction rules and branching rules on every set $\{x\}$ (with $x \in V \setminus S$)

1. Apply reduction rules and branching rules on every set $\{x\}$ (with $x \in V \setminus S$)

Lemma: $|N(v) \cap S| \le 2$ for all $v \in V - S$.

1. Apply reduction rules and branching rules on every set $\{x\}$ (with $x \in V \setminus S$)

Lemma: $|N(v) \cap S| \le 2$ for all $v \in V - S$.

2. Use the extended-SP decomposition to apply the branching rules and reduction rules in a bottom-up manner.

1. Apply reduction rules and branching rules on every set $\{x\}$ (with $x \in V \setminus S$)

Lemma: $|N(v) \cap S| \le 2$ for all $v \in V - S$.

2. Use the extended-SP decomposition to apply the branching rules and reduction rules in a bottom-up manner.

BRANCH-OR-REDUCE Lemma: Either one of the branching rules apply on $|X| \le c_1$, or extended bypassing rules apply. Otherwise you're at a leaf instance.

1. Apply reduction rules and branching rules on every set $\{x\}$ (with $x \in V \setminus S$)

Lemma: $|N(v) \cap S| \le 2$ for all $v \in V - S$.

2. Use the extended-SP decomposition to apply the branching rules and reduction rules in a bottom-up manner.

BRANCH-OR-REDUCE Lemma: Either one of the branching rules apply on $|X| \le c_1$, or extended bypassing rules apply. Otherwise you're at a leaf instance.

3. Solve each independent instance in polytime

CONCLUSION

Theorem: There exists a single-exponential FPT-time algorithm for the K_4 -MINOR COVER problem.

Conclusion

Theorem: There exists a single-exponential FPT-time algorithm for the K_4 -MINOR COVER problem.

Open question:

1. Due to recent developement, we have $2^{O(k)} \cdot n^{O(1)}$ -time algorithm for \mathcal{F} -minor cover problem, for any finite collection \mathcal{F} containing at least one planar graph.

Conclusion

Theorem: There exists a single-exponential FPT-time algorithm for the K_4 -MINOR COVER problem.

Open question:

- 1. Due to recent developement, we have $2^{O(k)} \cdot n^{O(1)}$ -time algorithm for \mathcal{F} -minor cover problem, for any finite collection \mathcal{F} containing at least one planar graph.
- 2. How about $\mathcal{F}=\{K_5\}$ or $\mathcal{F}=\{K_5,K_{3,3}\}$? Current best is double-exponential i.e. $2^{2^{O(k)}}$.

Conclusion

Theorem: There exists a single-exponential FPT-time algorithm for the K_4 -MINOR COVER problem.

Open question:

- 1. Due to recent developement, we have $2^{O(k)} \cdot n^{O(1)}$ -time algorithm for \mathcal{F} -minor cover problem, for any finite collection \mathcal{F} containing at least one planar graph.
- 2. How about $\mathcal{F}=\{K_5\}$ or $\mathcal{F}=\{K_5,K_{3,3}\}$? Current best is double-exponential i.e. $2^{2^{O(k)}}$.

Thank you