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PARAMETERIZED K;-MINOR COVER
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PARAMETERIZED K3-MINOR COVER
(a.k.a. PARAMETERIZED TREEWIDTH-TWO VERTEX DELETION)

Given a graph G = (V/, E) and an integer k as parameter,
» at most k vertices S C V s.it G[V \ S| is K4-minor free ?
> at most k vertices S C V s.t tw(G[V \ S]) <27

Observations :

1. VERTEX COVER = K>-MINOR COVER
= TREEWIDTH-ZERO VERTEX DELETION

2. FEEDBACK VERTEX SET
= K3-MINOR COVER
= TREEWIDTH-ONE VERTEX DELETION

More generally,

How fast can we solve TREEWIDTH-t VERTEX DELETION ?




KNOWN RESULTS (*WHEN WE SUBMITTED)

1.

PARAMETERIZED K3-MINOR COVER is FPT
(by the Roberston and Seymour’ graph minor theorem or by
Courcelle’s theorem)

2. Best algorithm runs in 20(<lgk) . ,O) [Fomin et al.'11]
3. 2000 . n9()_algorithm when for t = 0, 1.
4. No hope for a 2°(%) n0(1) algorithm [Chen et al.'05]
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KNOWN RESULTS (*WHEN WE SUBMITTED)

1. PARAMETERIZED K4-MINOR COVER is FPT
(by the Roberston and Seymour’ graph minor theorem or by
Courcelle’s theorem)

2. Best algorithm runs in 20(<lgk) . ,O) [Fomin et al.'11]
3. 2000 . n9()_algorithm when for t = 0, 1.
4. No hope for a 2°(%) n0(1) algorithm [Chen et al.'05]

OUR RESULT
There exists an algorithm that solves the PARAMETERIZED
K4;-MINOR COVER problem in time 20(K) . ,O(1).

KNOWN RESULTS (*Now, A FEW MONTHS LATER...)

1. TREEWIDTH-t VERTEX DELETION in 299 . nlog n? [Fomin
et al.'12], in 290K . n? [Kim et al.'12]

2. Polynomial kernel [Fomin et al.'12]
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that SNS =10
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Iterative compression
allows us to focus on DISJOINT-Ky-MINOR COVER

» Given G = (V,E), a K4~-MINOR COVER S of size k + 1

» Compute (if it exists) a Ks~-MINOR COVER S’ of size k such
that SNS =10

Folklore: If D1SJOINT-K4-MINOR COVER is single-exponential,
PARAMETERIZED Kj3-MINOR COVER is single-exponential.

From the additional S, we can retrieve rich structural information.

Our algorithm for D1SJOINT-K3-MINOR COVER can be viewed as
a generalization of [Chen et al.08] for DiSJOINT-FVS.
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Di1sJoINT-FVS: intuition

DI1sJOINT-K43-MINOR COVER
Branching Rules
SP-decomposition
Reduction Rules

Algorithm for the DiSJOINT-K;-MINOR COVER



D1sJOINT-FEEDBACK VERTEX SET (D1sjoINT-FVS)
» Given G = (V,E), a feedback vertex set S of size k + 1

» Compute (if it exists) a feedback vertex set S’ size k such
that SN S" = 0.



D1sJOINT-FEEDBACK VERTEX SET (D1sjoINT-FVS)
» Given G = (V,E), a feedback vertex set S of size k + 1

» Compute (if it exists) a feedback vertex set S’ size k such
that SN S" = 0.

[Chen et al.08] We use
» branching and reduction rules

» a measure function to analyze the time complexity

(11 =k + #cc(G[S))]
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Red. Rule 1: Remove leaf x € V\ Sif N(x)NS =10
Red. Rule 2: Bypass leaf x € V\ Sif d(x) =2, [N(x)N S| =1

Red. Rule 3: Remove every vertex x € V' \ S with at least 2
neighbours in some connect. comp. C of G[S] and decrease k by 1

Branching Rule: If x € V'\ S has two neighbours in two different
connected components of G[S], then branch on

» (G—{x},S.k—1) = 1 decreases
» (G,SU{x},k) = 1 decreases



INGREDIENTS OF [CHEN ET AL.08]
» Branching rules AND appropriate measure function .
» Reduction rules to bound the branching degree.

» An appropriate tree-like structure to process G — S.

v

In the search tree, leaf instances are not hard.



INGREDIENTS OF [CHEN ET AL.08]

>
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>

Branching rules AND appropriate measure function .
Reduction rules to bound the branching degree.
An appropriate tree-like structure to process G — S.

In the search tree, leaf instances are not hard.

For the D1SJOINT-K;-MINOR COVER we have

>

>

adapted the branching rules and introduce a new measure p

adapted the reduction rules (extended bypassing + chandelier
+ trivial)
extended SP-decomposition for treewidth-2 graphs.

in the search tree, a leaf instance is VERTEX COVER on circle
graphs (polytime).



BRANCHING RULES (1)

Let (G, S, k) be an instance of DISJOINT-Ks-MINOR COVER.

Branching Rule 1: If X € V'\ S is a set such that G[S U X]
contains a Kj-subdivision, then



BRANCHING RULES (1)

Let (G, S, k) be an instance of DISJOINT-K;-MINOR COVER

Branching Rule 1: If X € V'\ S is a set such that G[S U X]
contains a Kj-subdivision, then

» we must delete one of X.
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Let (G, S, k) be an instance of DISJOINT-K;-MINOR COVER

Branching Rule 2: If X C V'\ S is an s1, s;-path and
{s1,52} € Ns(X) with ccs(s1) # ccs(sz), then,
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Let (G, S, k) be an instance of DISJOINT-Ks-MINOR COVER.

Branching Rule 2: If X C V'\ S is an s1, s;-path and
{s1,} C Ns(X) with ccs(s1) # ccs(sz), then,
» either we delete one of X

» or X is added to S (no vertex deleted)
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» or X is added to S (no vertex deleted)
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Claim: p = ¢ X k+ c1 x #cc(G[S]) + #bc(G[S]) is decreasing



BRANCHING RULES (3)

Let (G, S, k) be an instance of D1SJOINT-Ks-MINOR COVER.

Branching Rule 3: If X C V'\ S is an s1, sp-path and
{s1,52} C Ns(X) with ccs(s1) = ccs(s2) and bes(si) # bes(sz),
then,

> either we delete one of X
» or X is added to S (no vertex deleted)

Claim: p = ¢ X k+ c1 x #cc(G[S]) + #bc(G[S]) is decreasing

» ¢; depends on the maximum size of the sets X on which the
branching rules is applied
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connected component (no matter how large | X| might be).
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Suppose the branching rules have been exhaustively applied to all
connected component (no matter how large | X| might be).

Then the current instance has a nice structure.

independent instance can be solved in poly-time



How to bound the size of X to branch on?
First, we develop a notion of tree-like structure for K4-minor-free
graphs.



How to bound the size of X to branch on?
First, we develop a notion of tree-like structure for K4-minor-free
graphs.

Use the fact: A graph is K4-minor free iff
its biconnected components are series-parallel graphs



How to bound the size of X to branch on?
First, we develop a notion of tree-like structure for K4-minor-free
graphs.

Use the fact: A graph is K4-minor free iff
its biconnected components are series-parallel graphs

extended-SP decomposition




How to bound the size of X to branch on?
First, we develop a notion of tree-like structure for K4-minor-free
graphs.

Use the fact: A graph is K4-minor free iff
its biconnected components are series-parallel graphs

extended-SP decomposition = block tree

t




How to bound the size of X to branch on?
First, we develop a notion of tree-like structure for K4-minor-free
graphs.

Use the fact: A graph is K4-minor free iff
its biconnected components are series-parallel graphs

extended-SP decomposition = block tree + SP-tree on every block
// S,t}

(st) S{st}
ﬂ 7 s O
s // {ac} Il {ct}
AN Y

S{aC} (@) (b /{ch
/
(ab) (b ©) S{ctt  S{ct

[
(cd) (dt) (ce) (et)



REDUCTION RULES: TRIVIAL

Reduction rule: Components NOT participating any Kj-subdivision
is removed.
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Reduction rule: Components NOT participating any Kj-subdivision
is removed.




REDUCTION RULES: TRIVIAL

S

Reduction rule: Components NOT participating any Kj-subdivision
is removed.

Reduction rule: Bypass degree-2 vertices and remove multiple
edges.
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AN N

REDUCTION RULES: EXTENDED BYPASS-1

when connected X s.t. X NS = () has a separator of size 2




REDUCTION RULES: EXTENDED BYPASS-2

Let (G, S, k) be an instance of DISJOINT-K;-MINOR COVER

Disjoint Protrusion Rule: Let X be a t-protrusion of G such that

XNS=0and |X]|>~(t)

Then,




REDUCTION RULES: EXTENDED BYPASS-2

Let (G, S, k) be an instance of DISJOINT-K;-MINOR COVER

Disjoint Protrusion Rule: Let X be a t-protrusion of G such that

XNS=0and |X]|>~(t)

Then, replace X with a t-protrusion X’ of smaller size.
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ALGORITHM OUTLINE

1. Apply reduction rules and branching rules on every set {x}
(with x € V'\ §S)

Lemma: [N(v)NS|<2forallveV-S.

2. Use the extended-SP decomposition to apply the branching
rules and reduction rules in a bottom-up manner.

BRANCH-OR-REDUCE Lemma: Either one of the branching
rules apply on |X| < ¢1, or extended bypassing rules apply.
Otherwise you're at a leaf instance.

3. Solve each independent instance in polytime
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CONCLUSION

Theorem: There exists a single-exponential FPT-time algorithm for
the K4-MINOR COVER problem.

Open question:
1. Due to recent developement, we have 20(K) . nO(1)_time
algorithm for F-minor cover problem, for any finite collection
F containing at least one planar graph.

2. How about F = {Ks} or F = {Ks, K33}? Current best is

. . O(k
double-exponential i.e. 22 “.

Thank you
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