
A single exponential FPT algorithm
for the K4-minor cover problem

Eunjung Kim

CNRS - LAMSADE, Paris, France

Joint work with
Christophe Paul (cnrs - lirmm, france

Geevarghese Philip (mpi, germany)

July 4, 2012

Parameterized K4-Minor Cover

(a.k.a. Parameterized Treewidth-two Vertex Deletion)

Given a graph G = (V ,E) and an integer k as parameter,

I at most k vertices S ⊆ V s.t G [V \ S] is K4-minor free ?

I at most k vertices S ⊆ V s.t tw(G [V \ S]) 6 2 ?

Parameterized K4-Minor Cover
(a.k.a. Parameterized Treewidth-two Vertex Deletion)

Given a graph G = (V ,E) and an integer k as parameter,

I at most k vertices S ⊆ V s.t G [V \ S] is K4-minor free ?

I at most k vertices S ⊆ V s.t tw(G [V \ S]) 6 2 ?

Parameterized K4-Minor Cover
(a.k.a. Parameterized Treewidth-two Vertex Deletion)

Given a graph G = (V ,E) and an integer k as parameter,

I at most k vertices S ⊆ V s.t G [V \ S] is K4-minor free ?

I at most k vertices S ⊆ V s.t tw(G [V \ S]) 6 2 ?

Observations :

1. Vertex Cover ≡ K2-Minor Cover
≡ Treewidth-zero Vertex Deletion

2. Feedback Vertex Set
≡ K3-Minor Cover
≡ Treewidth-one Vertex Deletion

More generally,

How fast can we solve Treewidth-t Vertex Deletion ?

Known results (*when we submitted)

1. Parameterized K4-Minor Cover is FPT
(by the Roberston and Seymour’ graph minor theorem or by
Courcelle’s theorem)

2. Best algorithm runs in 2O(k log k) · nO(1) [Fomin et al.’11]

3. 2O(k) · nO(1)-algorithm when for t = 0, 1.

4. No hope for a 2o(k).nO(1) algorithm [Chen et al.’05]

Known results (*when we submitted)

1. Parameterized K4-Minor Cover is FPT
(by the Roberston and Seymour’ graph minor theorem or by
Courcelle’s theorem)

2. Best algorithm runs in 2O(k log k) · nO(1) [Fomin et al.’11]

3. 2O(k) · nO(1)-algorithm when for t = 0, 1.

4. No hope for a 2o(k).nO(1) algorithm [Chen et al.’05]

Our result
There exists an algorithm that solves the Parameterized
K4-Minor Cover problem in time 2O(k) · nO(1).

Known results (*when we submitted)

1. Parameterized K4-Minor Cover is FPT
(by the Roberston and Seymour’ graph minor theorem or by
Courcelle’s theorem)

2. Best algorithm runs in 2O(k log k) · nO(1) [Fomin et al.’11]

3. 2O(k) · nO(1)-algorithm when for t = 0, 1.

4. No hope for a 2o(k).nO(1) algorithm [Chen et al.’05]

Our result
There exists an algorithm that solves the Parameterized
K4-Minor Cover problem in time 2O(k) · nO(1).

Known results (*now, a few months later...)

1. Treewidth-t Vertex Deletion in 2O(k) · n log n2 [Fomin
et al.’12], in 2O(k) · n2 [Kim et al.’12]

2. Polynomial kernel [Fomin et al.’12]

Iterative compression
allows us to focus on Disjoint-K4-Minor Cover

I Given G = (V ,E), a K4-Minor Cover S of size k + 1

I Compute (if it exists) a K4-Minor Cover S ′ of size k such
that S ∩ S ′ = ∅

Iterative compression
allows us to focus on Disjoint-K4-Minor Cover

I Given G = (V ,E), a K4-Minor Cover S of size k + 1

I Compute (if it exists) a K4-Minor Cover S ′ of size k such
that S ∩ S ′ = ∅

Folklore: If Disjoint-K4-Minor Cover is single-exponential,
Parameterized K4-Minor Cover is single-exponential.

Iterative compression
allows us to focus on Disjoint-K4-Minor Cover

I Given G = (V ,E), a K4-Minor Cover S of size k + 1

I Compute (if it exists) a K4-Minor Cover S ′ of size k such
that S ∩ S ′ = ∅

Folklore: If Disjoint-K4-Minor Cover is single-exponential,
Parameterized K4-Minor Cover is single-exponential.

From the additional S , we can retrieve rich structural information.

Iterative compression
allows us to focus on Disjoint-K4-Minor Cover

I Given G = (V ,E), a K4-Minor Cover S of size k + 1

I Compute (if it exists) a K4-Minor Cover S ′ of size k such
that S ∩ S ′ = ∅

Folklore: If Disjoint-K4-Minor Cover is single-exponential,
Parameterized K4-Minor Cover is single-exponential.

From the additional S , we can retrieve rich structural information.

Our algorithm for Disjoint-K4-Minor Cover can be viewed as
a generalization of [Chen et al.08] for Disjoint-FVS.

Introduction

Disjoint-FVS: intuition

Disjoint-K4-Minor Cover
Branching Rules
SP-decomposition
Reduction Rules

Algorithm for the Disjoint-K4-Minor Cover

Disjoint-Feedback Vertex Set (Disjoint-FVS)

I Given G = (V ,E), a feedback vertex set S of size k + 1

I Compute (if it exists) a feedback vertex set S ′ size k such
that S ∩ S ′ = ∅.

Disjoint-Feedback Vertex Set (Disjoint-FVS)

I Given G = (V ,E), a feedback vertex set S of size k + 1

I Compute (if it exists) a feedback vertex set S ′ size k such
that S ∩ S ′ = ∅.

[Chen et al.08] We use

I branching and reduction rules

I a measure function to analyze the time complexity

µ = k + #cc(G [S])

Skip example

Red. Rule 1: Remove leaf x ∈ V \ S if N(x) ∩ S = ∅

Red. Rule 1: Remove leaf x ∈ V \ S if N(x) ∩ S = ∅

Red. Rule 1: Remove leaf x ∈ V \ S if N(x) ∩ S = ∅
Red. Rule 2: Bypass leaf x ∈ V \ S if d(x) = 2, |N(x) ∩ S | = 1

Red. Rule 1: Remove leaf x ∈ V \ S if N(x) ∩ S = ∅
Red. Rule 2: Bypass leaf x ∈ V \ S if d(x) = 2, |N(x) ∩ S | = 1

Red. Rule 1: Remove leaf x ∈ V \ S if N(x) ∩ S = ∅
Red. Rule 2: Bypass leaf x ∈ V \ S if d(x) = 2, |N(x) ∩ S | = 1

Red. Rule 3: Remove every vertex x ∈ V \ S with at least 2
neighbours in some connect. comp. C of G [S] and decrease k by 1

Red. Rule 1: Remove leaf x ∈ V \ S if N(x) ∩ S = ∅
Red. Rule 2: Bypass leaf x ∈ V \ S if d(x) = 2, |N(x) ∩ S | = 1

Red. Rule 3: Remove every vertex x ∈ V \ S with at least 2
neighbours in some connect. comp. C of G [S] and decrease k by 1

Red. Rule 1: Remove leaf x ∈ V \ S if N(x) ∩ S = ∅
Red. Rule 2: Bypass leaf x ∈ V \ S if d(x) = 2, |N(x) ∩ S | = 1

Red. Rule 3: Remove every vertex x ∈ V \ S with at least 2
neighbours in some connect. comp. C of G [S] and decrease k by 1

Red. Rule 1: Remove leaf x ∈ V \ S if N(x) ∩ S = ∅
Red. Rule 2: Bypass leaf x ∈ V \ S if d(x) = 2, |N(x) ∩ S | = 1

Red. Rule 3: Remove every vertex x ∈ V \ S with at least 2
neighbours in some connect. comp. C of G [S] and decrease k by 1

Red. Rule 1: Remove leaf x ∈ V \ S if N(x) ∩ S = ∅
Red. Rule 2: Bypass leaf x ∈ V \ S if d(x) = 2, |N(x) ∩ S | = 1

Red. Rule 3: Remove every vertex x ∈ V \ S with at least 2
neighbours in some connect. comp. C of G [S] and decrease k by 1

Branching Rule: If x ∈ V \ S has two neighbours in two different
connected components of G [S], then branch on

I (G − {x},S , k − 1) ⇒ µ decreases

I (G ,S ∪ {x}, k)

Red. Rule 1: Remove leaf x ∈ V \ S if N(x) ∩ S = ∅
Red. Rule 2: Bypass leaf x ∈ V \ S if d(x) = 2, |N(x) ∩ S | = 1

Red. Rule 3: Remove every vertex x ∈ V \ S with at least 2
neighbours in some connect. comp. C of G [S] and decrease k by 1

Branching Rule: If x ∈ V \ S has two neighbours in two different
connected components of G [S], then branch on

I (G − {x},S , k − 1) ⇒ µ decreases

I (G ,S ∪ {x}, k) ⇒ µ decreases

Red. Rule 1: Remove leaf x ∈ V \ S if N(x) ∩ S = ∅
Red. Rule 2: Bypass leaf x ∈ V \ S if d(x) = 2, |N(x) ∩ S | = 1

Red. Rule 3: Remove every vertex x ∈ V \ S with at least 2
neighbours in some connect. comp. C of G [S] and decrease k by 1

Branching Rule: If x ∈ V \ S has two neighbours in two different
connected components of G [S], then branch on

I (G − {x},S , k − 1) ⇒ µ decreases

I (G , S ∪ {x}, k) ⇒ µ decreases

Ingredients of [Chen et al.08]

I Branching rules AND appropriate measure function µ.

I Reduction rules to bound the branching degree.

I An appropriate tree-like structure to process G − S .

I In the search tree, leaf instances are not hard.

Ingredients of [Chen et al.08]

I Branching rules AND appropriate measure function µ.

I Reduction rules to bound the branching degree.

I An appropriate tree-like structure to process G − S .

I In the search tree, leaf instances are not hard.

For the Disjoint-K4-Minor Cover we have

I adapted the branching rules and introduce a new measure µ

I adapted the reduction rules (extended bypassing + chandelier
+ trivial)

I extended SP-decomposition for treewidth-2 graphs.

I in the search tree, a leaf instance is Vertex Cover on circle
graphs (polytime).

Branching Rules (1)

Let (G , S , k) be an instance of Disjoint-K4-Minor Cover.

Branching Rule 1: If X ⊆ V \ S is a set such that G [S ∪ X]
contains a K4-subdivision, then

I we must delete one of X .

Branching Rules (1)

Let (G , S , k) be an instance of Disjoint-K4-Minor Cover.

Branching Rule 1: If X ⊆ V \ S is a set such that G [S ∪ X]
contains a K4-subdivision, then

I we must delete one of X .

Branching Rules (2)

Branching Rules (2)

Let (G , S , k) be an instance of Disjoint-K4-Minor Cover.

Branching Rule 2: If X ⊆ V \ S is an s1, s2-path and
{s1, s2} ⊆ NS(X) with ccS(s1) 6= ccS(s2), then,

I either we delete one of X

I or X is added to S (no vertex deleted)

Branching Rules (2)

Let (G , S , k) be an instance of Disjoint-K4-Minor Cover.

Branching Rule 2: If X ⊆ V \ S is an s1, s2-path and
{s1, s2} ⊆ NS(X) with ccS(s1) 6= ccS(s2), then,

I either we delete one of X

I or X is added to S (no vertex deleted)

Branching Rules (3)

Let (G , S , k) be an instance of Disjoint-K4-Minor Cover.

Branching Rule 3: If X ⊆ V \ S is an s1, s2-path and
{s1, s2} ⊆ NS(X) with ccS(s1) = ccS(s2) and bcS(s1) 6= bcS(s2),
then,

I either we delete one of X

I or X is added to S (no vertex deleted)

Branching Rules (3)

Let (G , S , k) be an instance of Disjoint-K4-Minor Cover.

Branching Rule 3: If X ⊆ V \ S is an s1, s2-path and
{s1, s2} ⊆ NS(X) with ccS(s1) = ccS(s2) and bcS(s1) 6= bcS(s2),
then,

I either we delete one of X

I or X is added to S (no vertex deleted)

Claim: µ = c1 × k + c1 ×#cc(G [S]) + #bc(G [S]) is decreasing

I c1 depends on the maximum size of the sets X on which the
branching rules is applied

Branching Rules (3)

Let (G , S , k) be an instance of Disjoint-K4-Minor Cover.

Branching Rule 3: If X ⊆ V \ S is an s1, s2-path and
{s1, s2} ⊆ NS(X) with ccS(s1) = ccS(s2) and bcS(s1) 6= bcS(s2),
then,

I either we delete one of X

I or X is added to S (no vertex deleted)

Claim: µ = c1 × k + c1 ×#cc(G [S]) + #bc(G [S]) is decreasing

I c1 depends on the maximum size of the sets X on which the
branching rules is applied

Suppose the branching rules have been exhaustively applied to all
connected component (no matter how large |X | might be).

Suppose the branching rules have been exhaustively applied to all
connected component (no matter how large |X | might be).

Then the current instance has a nice structure.

Suppose the branching rules have been exhaustively applied to all
connected component (no matter how large |X | might be).

Then the current instance has a nice structure.

independent instance can be solved in poly-time

How to bound the size of X to branch on?
First, we develop a notion of tree-like structure for K4-minor-free
graphs.

How to bound the size of X to branch on?
First, we develop a notion of tree-like structure for K4-minor-free
graphs.

Use the fact: A graph is K4-minor free iff
its biconnected components are series-parallel graphs

How to bound the size of X to branch on?
First, we develop a notion of tree-like structure for K4-minor-free
graphs.

Use the fact: A graph is K4-minor free iff
its biconnected components are series-parallel graphs

extended-SP decomposition

= block tree + SP-tree on every block

s
t

a

b e

dc

How to bound the size of X to branch on?
First, we develop a notion of tree-like structure for K4-minor-free
graphs.

Use the fact: A graph is K4-minor free iff
its biconnected components are series-parallel graphs

extended-SP decomposition = block tree

+ SP-tree on every block

s
t

a

b e

dc

How to bound the size of X to branch on?
First, we develop a notion of tree-like structure for K4-minor-free
graphs.

Use the fact: A graph is K4-minor free iff
its biconnected components are series-parallel graphs

extended-SP decomposition = block tree + SP-tree on every block

(s,t)

// {s,t}

S {s,t}

// {c,t}// {a,c}(s,a)

(b,c)

(e,t)(d,t)(c,d) (c,e)

S {c,t} S {c,t}

(c,t) // {c,t}(a,c)

(a,b)

S {a,c}

s
t

a

b e

dc

Reduction Rules: trivial

Reduction rule: Components NOT participating any K4-subdivision
is removed.

Reduction Rules: trivial

Reduction rule: Components NOT participating any K4-subdivision
is removed.

Reduction Rules: trivial

Reduction rule: Components NOT participating any K4-subdivision
is removed.

Reduction rule: Bypass degree-2 vertices and remove multiple
edges.

Reduction Rules: Chandelier

Reduction Rules: Chandelier

Reduction Rules: Chandelier

Reduction Rules: extended bypass-1

Reduction Rules: Chandelier

Reduction Rules: extended bypass-1

when connected X s.t. X ∩ S = ∅ has a separator of size 2

Reduction Rules: extended bypass-2

Let (G , S , k) be an instance of Disjoint-K4-Minor Cover

Disjoint Protrusion Rule: Let X be a t-protrusion of G such that

X ∩ S = ∅ and |X | > γ(t)

X

S

Then,

Reduction Rules: extended bypass-2

Let (G , S , k) be an instance of Disjoint-K4-Minor Cover

Disjoint Protrusion Rule: Let X be a t-protrusion of G such that

X ∩ S = ∅ and |X | > γ(t)

X
X’

S

Then, replace X with a t-protrusion X ′ of smaller size.

Introduction

Disjoint-FVS: intuition

Disjoint-K4-Minor Cover
Branching Rules
SP-decomposition
Reduction Rules

Algorithm for the Disjoint-K4-Minor Cover

Algorithm outline

1. Apply reduction rules and branching rules on every set {x}
(with x ∈ V \ S)

2. Use the extended-SP decomposition to apply the branching
rules and reduction rules in a bottom-up manner.

3. Solve each independent instance in polytime

Algorithm outline

1. Apply reduction rules and branching rules on every set {x}
(with x ∈ V \ S)

Lemma: |N(v) ∩ S | ≤ 2 for all v ∈ V − S .

2. Use the extended-SP decomposition to apply the branching
rules and reduction rules in a bottom-up manner.

3. Solve each independent instance in polytime

Algorithm outline

1. Apply reduction rules and branching rules on every set {x}
(with x ∈ V \ S)

Lemma: |N(v) ∩ S | ≤ 2 for all v ∈ V − S .

2. Use the extended-SP decomposition to apply the branching
rules and reduction rules in a bottom-up manner.

3. Solve each independent instance in polytime

Algorithm outline

1. Apply reduction rules and branching rules on every set {x}
(with x ∈ V \ S)

Lemma: |N(v) ∩ S | ≤ 2 for all v ∈ V − S .

2. Use the extended-SP decomposition to apply the branching
rules and reduction rules in a bottom-up manner.

Branch-or-Reduce Lemma: Either one of the branching
rules apply on |X | ≤ c1, or extended bypassing rules apply.
Otherwise you’re at a leaf instance.

3. Solve each independent instance in polytime

Algorithm outline

1. Apply reduction rules and branching rules on every set {x}
(with x ∈ V \ S)

Lemma: |N(v) ∩ S | ≤ 2 for all v ∈ V − S .

2. Use the extended-SP decomposition to apply the branching
rules and reduction rules in a bottom-up manner.

Branch-or-Reduce Lemma: Either one of the branching
rules apply on |X | ≤ c1, or extended bypassing rules apply.
Otherwise you’re at a leaf instance.

3. Solve each independent instance in polytime

Conclusion

Theorem: There exists a single-exponential FPT-time algorithm for
the K4-Minor Cover problem.

1. Due to recent developement, we have 2O(k) · nO(1)-time
algorithm for F-minor cover problem, for any finite collection
F containing at least one planar graph.

2. How about F = {K5} or F = {K5,K3,3}? Current best is

double-exponential i.e. 22
O(k)

.

Conclusion

Theorem: There exists a single-exponential FPT-time algorithm for
the K4-Minor Cover problem.

Open question:

1. Due to recent developement, we have 2O(k) · nO(1)-time
algorithm for F-minor cover problem, for any finite collection
F containing at least one planar graph.

2. How about F = {K5} or F = {K5,K3,3}? Current best is

double-exponential i.e. 22
O(k)

.

Conclusion

Theorem: There exists a single-exponential FPT-time algorithm for
the K4-Minor Cover problem.

Open question:

1. Due to recent developement, we have 2O(k) · nO(1)-time
algorithm for F-minor cover problem, for any finite collection
F containing at least one planar graph.

2. How about F = {K5} or F = {K5,K3,3}? Current best is

double-exponential i.e. 22
O(k)

.

Conclusion

Theorem: There exists a single-exponential FPT-time algorithm for
the K4-Minor Cover problem.

Open question:

1. Due to recent developement, we have 2O(k) · nO(1)-time
algorithm for F-minor cover problem, for any finite collection
F containing at least one planar graph.

2. How about F = {K5} or F = {K5,K3,3}? Current best is

double-exponential i.e. 22
O(k)

.

Thank you

	Introduction
	Disjoint-FVS: intuition
	Disjoint-K4-Minor Cover
	Branching Rules
	SP-decomposition
	Reduction Rules

	Algorithm for the Disjoint-K4-Minor Cover

