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Parameterized K4-Minor Cover

(a.k.a. Parameterized Treewidth-two Vertex Deletion)

Given a graph G = (V ,E ) and an integer k as parameter,

I at most k vertices S ⊆ V s.t G [V \ S ] is K4-minor free ?

I at most k vertices S ⊆ V s.t tw(G [V \ S ]) 6 2 ?
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Parameterized K4-Minor Cover
(a.k.a. Parameterized Treewidth-two Vertex Deletion)

Given a graph G = (V ,E ) and an integer k as parameter,

I at most k vertices S ⊆ V s.t G [V \ S ] is K4-minor free ?

I at most k vertices S ⊆ V s.t tw(G [V \ S ]) 6 2 ?

Observations :

1. Vertex Cover ≡ K2-Minor Cover
≡ Treewidth-zero Vertex Deletion

2. Feedback Vertex Set
≡ K3-Minor Cover
≡ Treewidth-one Vertex Deletion

More generally,

How fast can we solve Treewidth-t Vertex Deletion ?



Known results (*when we submitted)

1. Parameterized K4-Minor Cover is FPT
(by the Roberston and Seymour’ graph minor theorem or by
Courcelle’s theorem)

2. Best algorithm runs in 2O(k log k) · nO(1) [Fomin et al.’11]

3. 2O(k) · nO(1)-algorithm when for t = 0, 1.

4. No hope for a 2o(k).nO(1) algorithm [Chen et al.’05]
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Known results (*when we submitted)

1. Parameterized K4-Minor Cover is FPT
(by the Roberston and Seymour’ graph minor theorem or by
Courcelle’s theorem)

2. Best algorithm runs in 2O(k log k) · nO(1) [Fomin et al.’11]

3. 2O(k) · nO(1)-algorithm when for t = 0, 1.

4. No hope for a 2o(k).nO(1) algorithm [Chen et al.’05]

Our result
There exists an algorithm that solves the Parameterized
K4-Minor Cover problem in time 2O(k) · nO(1).

Known results (*now, a few months later...)

1. Treewidth-t Vertex Deletion in 2O(k) · n log n2 [Fomin
et al.’12], in 2O(k) · n2 [Kim et al.’12]

2. Polynomial kernel [Fomin et al.’12]
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Iterative compression
allows us to focus on Disjoint-K4-Minor Cover

I Given G = (V ,E ), a K4-Minor Cover S of size k + 1

I Compute (if it exists) a K4-Minor Cover S ′ of size k such
that S ∩ S ′ = ∅

Folklore: If Disjoint-K4-Minor Cover is single-exponential,
Parameterized K4-Minor Cover is single-exponential.

From the additional S , we can retrieve rich structural information.

Our algorithm for Disjoint-K4-Minor Cover can be viewed as
a generalization of [Chen et al.08] for Disjoint-FVS.
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Disjoint-Feedback Vertex Set (Disjoint-FVS)

I Given G = (V ,E ), a feedback vertex set S of size k + 1

I Compute (if it exists) a feedback vertex set S ′ size k such
that S ∩ S ′ = ∅.

[Chen et al.08] We use

I branching and reduction rules

I a measure function to analyze the time complexity

µ = k + #cc(G [S ])

Skip example
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Ingredients of [Chen et al.08]

I Branching rules AND appropriate measure function µ.

I Reduction rules to bound the branching degree.

I An appropriate tree-like structure to process G − S .

I In the search tree, leaf instances are not hard.

For the Disjoint-K4-Minor Cover we have

I adapted the branching rules and introduce a new measure µ

I adapted the reduction rules (extended bypassing + chandelier
+ trivial)

I extended SP-decomposition for treewidth-2 graphs.

I in the search tree, a leaf instance is Vertex Cover on circle
graphs (polytime).
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Let (G , S , k) be an instance of Disjoint-K4-Minor Cover.

Branching Rule 1: If X ⊆ V \ S is a set such that G [S ∪ X ]
contains a K4-subdivision, then

I we must delete one of X .
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Suppose the branching rules have been exhaustively applied to all
connected component (no matter how large |X | might be).

Then the current instance has a nice structure.

independent instance can be solved in poly-time
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How to bound the size of X to branch on?
First, we develop a notion of tree-like structure for K4-minor-free
graphs.

Use the fact: A graph is K4-minor free iff
its biconnected components are series-parallel graphs

extended-SP decomposition = block tree + SP-tree on every block

(s,t)

// {s,t} 

S {s,t}

// {c,t}// {a,c}(s,a)

(b,c)

(e,t)(d,t)(c,d) (c,e)

S {c,t} S {c,t}

(c,t) // {c,t}(a,c)

(a,b)

S {a,c}

s
t

a

b e

dc



Reduction Rules: trivial

Reduction rule: Components NOT participating any K4-subdivision
is removed.
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Reduction Rules: trivial

Reduction rule: Components NOT participating any K4-subdivision
is removed.

Reduction rule: Bypass degree-2 vertices and remove multiple
edges.
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Reduction Rules: Chandelier

Reduction Rules: extended bypass-1

when connected X s.t. X ∩ S = ∅ has a separator of size 2



Reduction Rules: extended bypass-2

Let (G , S , k) be an instance of Disjoint-K4-Minor Cover

Disjoint Protrusion Rule: Let X be a t-protrusion of G such that

X ∩ S = ∅ and |X | > γ(t)

X
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Then,



Reduction Rules: extended bypass-2

Let (G , S , k) be an instance of Disjoint-K4-Minor Cover

Disjoint Protrusion Rule: Let X be a t-protrusion of G such that

X ∩ S = ∅ and |X | > γ(t)

X
X’

S

Then, replace X with a t-protrusion X ′ of smaller size.
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Theorem: There exists a single-exponential FPT-time algorithm for
the K4-Minor Cover problem.

1. Due to recent developement, we have 2O(k) · nO(1)-time
algorithm for F-minor cover problem, for any finite collection
F containing at least one planar graph.

2. How about F = {K5} or F = {K5,K3,3}? Current best is
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Conclusion

Theorem: There exists a single-exponential FPT-time algorithm for
the K4-Minor Cover problem.

Open question:

1. Due to recent developement, we have 2O(k) · nO(1)-time
algorithm for F-minor cover problem, for any finite collection
F containing at least one planar graph.

2. How about F = {K5} or F = {K5,K3,3}? Current best is

double-exponential i.e. 22
O(k)

.

Thank you
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