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What is pathwidth? 

• Measure of how “path-like” a graph is 

– Related to treewidth (“tree-like”) 

• Gives the quality of a path decomposition, a 
decomposition of a graph into pieces arranged on a path 

• Both pathwidth and treewidth have been introduced many 
times under different names  

– (vertex separation number, node search number, partial 
k-tree, etc …) 

• Play crucial roles in Robertson & Seymour’s proof of the 
Graph Minor Theorem 
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Why is it important? 

• Many graph problems can be solved efficiently (in linear 
time) if a path or tree decomposition of small width is 
known 

• When comparing pathwidth to treewidth: 

– Path decompositions have larger width 

– Dynamic programming algorithms for path 
decompositions are simpler and use less memory 

• Important to find low-width path and tree decompositions 
efficiently 
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• Computing pathwidth or treewidth of a graph is NP-
complete 

– Pathwidth is even NP-complete on planar graphs 

– Treewidth of planar graphs is open 

• No constant-factor approximation algorithms known 

– Use heuristics, or exponential-time algorithms 

• There are 2poly(k) n algorithms that either: 

– Compute a decomposition of width k 

– Determine that no such decomposition exists 

 

• Runtime ☹(n) for every fixed k 

 



Preprocessing 

• Preprocess G to find a smaller graph G’, such that: 

– Path decomposition of G’ can be lifted efficiently to 
decomposition of G 

– Lifting does not increase the width 
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Preprocessing 

• Preprocess G to find a smaller graph G’, such that: 

– Path decomposition of G’ can be lifted efficiently to 
decomposition of G 

– Lifting does not increase the width 

• After preprocessing, find a decomposition for G’ by an 
exponential-time algorithm or heuristics 

• We want to give a guarantee on the size of the output  

– Kernelization 

• Cannot guarantee output is smaller than input (else P=NP) 

• So given a graph G of “difficulty” k, shrink G to poly(k) 

– Afterwards we can shrink no more 

 



Setting realistic goals 

• Cannot preprocess G to size poly(pw(G)) without changing 
the pathwidth 

– Unless NP ⊆ coNP/poly [BDFH’08,D’12] 

– k-Pathwidth is AND-compositional 
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Setting realistic goals 

• Cannot preprocess G to size poly(pw(G)) without changing 
the pathwidth 

– Unless NP ⊆ coNP/poly [BDFH’08,D’12] 

– k-Pathwidth is AND-compositional 

• Pick a measure for graph difficulty that is larger than pw(G) 

• Can we shrink to size polynomial in the larger measure? 

– For example: size of a minimum vertex cover 

– (Vertex set that covers all edges) 
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The preprocessing story so far … 

• Lots of work on preprocessing for treewidth 

• Heuristic reduction rules with experimental evaluations 

• Rules were found to work well in practice 

– No theoretical justification 

• BJK ‘11: 

– Existing reduction rules give size reduction to O(VC3) 

– With some more rules, size reduction to O(FVS4) 

– Heuristic rules have provable effect! 

• No prior work on preprocessing for pathwidth 

• This work: reduction rules, analysis & lower bounds 
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Path decomposition 

• A path decomposition of a graph G=(V,E) is a sequence  
(X1, …, Xr) of subsets of V, called bags, such that: 

– For all v, there is a bag that contains v 

– For all {v,w}  E, there is a bag that contains v and w 
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Path decomposition 

• A path decomposition of a graph G=(V,E) is a sequence  
(X1, …, Xr) of subsets of V, called bags, such that: 

– For all v, there is a bag that contains v 

– For all {v,w}  E, there is a bag that contains v and w 

– For all v, the bags that contain v are consecutive 
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Path decomposition 

• The width of a path decomposition (X1, …, Xr) is the size of 
its largest bag minus one: max1 i r |Xi|-1 

• The pathwidth of a graph G is the minimum width of a path 
decomposition of G 
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Path decomposition 

• Path/treewidth does not increase when deleting or 
contracting edges / vertices 

• Treewidth ≤ pathwidth 

• Paths have pathwidth = treewidth = 1 

• Trees have treewidth 1, but may have pathwidth (log n) 
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Problem setting 

• Decision problem associated to pathwidth 

– Instance: Graph G, integer k. 

– Question: Does G have pathwidth ≤ k? 

 

• A reduction from G to G’ is safe for pathwidth k if it 
preserves whether the graph has pathwidth ≤ k 

– (G has pathwidth ≤ k) iff (G’ has pathwidth ≤ k) 

 

• Easy to lift decompositions of G’ to G 

• In practical settings: 

– Guess k, or work with upper- and lower bounds 
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Treewidth Edge Improvement Rule 
If v and w have ≥ k+1 common neighbors in G, then  

adding edge {v,w} does not change whether tw(G) ≤ k 

Pathwidth Edge Improvement Rule 
If v and w have ≥ k+1 common neighbors in G, then  

adding edge {v,w} does not change whether pw(G) ≤ k 

Common neighbors 

• Rule originates from Bodlaender’s linear-time algorithm for 
Treewidth 

• Any width-k tree decomposition has a bag with v and w 

– Hence any width-k path decomposition has a {v,w} bag 
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ensures that there is a 
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Pathwidth Simplicial Vertex Rule? 
Let v be a simplicial vertex in G.  
• If deg(v) ≥ k+1 then pw(G) > k 
• If deg(v) ≤ k then deleting v is safe for pathwidth k 
 

k+1 vertices 

Repeated application 
would eat up a tree 
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Pathwidth Degree-1 Vertex Rule 
If vertex v is only adjacent to x, and  
there is another degree-1 vertex w adjacent to x, then  
then deleting v is safe for pathwidth k 
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Pathwidth Simplicial Vertex Rule 
If v is simplicial with 2 ≤ deg(v) ≤ k, and  
∀ {x,y} in N(v), ∃ simplicial vtx ∉ N[v] seeing x and y,  
then deleting v is safe for pathwidth k 
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Effects of the reduction rules 

• If G has a vertex cover X of size l, and you work relative to 

the structure of X: 

– Easy counting arguments prove O(l3) vertices 

– (After some trivial rules) 

 

• O(l3) when l is the vertex cover number 

• O(cl3 + c2l2) when l is the size of a vertex set whose 
removal gives components of at most c vertices each 

• O(l4) when l is the size of a vertex set whose removal 
results in disjoint stars 

Polynomial kernels (sizes in # vertices) 
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A kernelization lower bound 

• Pathwidth of a clique Kt is t-1 

• Pathwidth is easy for graphs that are “almost” a clique? 

– That become a clique after deleting k vertices 

• Builds on the NP-completeness proof for Treewidth and 
Pathwidth by Arnborg, Corneil & Proskurowski ‘87 

– They reduce Minimum Cut Linear Arrangement to 
computing Tree/path width on cobipartite graphs 

• We build a cross-composition of MinCut on cubic graphs 
into tree/pathwidth on a cobipartite graph where one 
partite set is small 

– Deleting the small set yields a clique  

 
Pathwidth and Treewidth do not admit polynomial kernels 

parameterized by vertex-deletion distance to a clique  
(unless NP ⊆ coNP/poly) 
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• Analysis proves effect of the rules with respect to several 
parameters 

• Pathwidth and treewidth do not admit polynomial kernels 
by deletion distance to a clique 
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