
Kernel Bounds for Structural
Parameterizations of Pathwidth

Bart M. P. Jansen

Joint work with

Hans L. Bodlaender & Stefan Kratsch

July 6th 2012, SWAT 2012, Helsinki

What is pathwidth?

What is pathwidth?

What is pathwidth?

What is pathwidth?

What is pathwidth?

• Measure of how “path-like” a graph is

– Related to treewidth (“tree-like”)

What is pathwidth?

• Measure of how “path-like” a graph is

– Related to treewidth (“tree-like”)

• Gives the quality of a path decomposition, a
decomposition of a graph into pieces arranged on a path

What is pathwidth?

• Measure of how “path-like” a graph is

– Related to treewidth (“tree-like”)

• Gives the quality of a path decomposition, a
decomposition of a graph into pieces arranged on a path

• Both pathwidth and treewidth have been introduced many
times under different names

– (vertex separation number, node search number, partial
k-tree, etc …)

What is pathwidth?

• Measure of how “path-like” a graph is

– Related to treewidth (“tree-like”)

• Gives the quality of a path decomposition, a
decomposition of a graph into pieces arranged on a path

• Both pathwidth and treewidth have been introduced many
times under different names

– (vertex separation number, node search number, partial
k-tree, etc …)

• Play crucial roles in Robertson & Seymour’s proof of the
Graph Minor Theorem

Why is it important?

• Many graph problems can be solved efficiently (in linear
time) if a path or tree decomposition of small width is
known

Why is it important?

• Many graph problems can be solved efficiently (in linear
time) if a path or tree decomposition of small width is
known

• When comparing pathwidth to treewidth:

– Path decompositions have larger width

– Dynamic programming algorithms for path
decompositions are simpler and use less memory

Why is it important?

• Many graph problems can be solved efficiently (in linear
time) if a path or tree decomposition of small width is
known

• When comparing pathwidth to treewidth:

– Path decompositions have larger width

– Dynamic programming algorithms for path
decompositions are simpler and use less memory

• Important to find low-width path and tree decompositions
efficiently

Finding good decompositions is hard

• Computing pathwidth or treewidth of a graph is NP-
complete

– Pathwidth is even NP-complete on planar graphs

– Treewidth of planar graphs is open

Finding good decompositions is hard

• Computing pathwidth or treewidth of a graph is NP-
complete

– Pathwidth is even NP-complete on planar graphs

– Treewidth of planar graphs is open

• No constant-factor approximation algorithms known

– Use heuristics, or exponential-time algorithms

Finding good decompositions is hard

• Computing pathwidth or treewidth of a graph is NP-
complete

– Pathwidth is even NP-complete on planar graphs

– Treewidth of planar graphs is open

• No constant-factor approximation algorithms known

– Use heuristics, or exponential-time algorithms

• There are 2poly(k) n algorithms that either:

– Compute a decomposition of width k

– Determine that no such decomposition exists

Finding good decompositions is hard

• Computing pathwidth or treewidth of a graph is NP-
complete

– Pathwidth is even NP-complete on planar graphs

– Treewidth of planar graphs is open

• No constant-factor approximation algorithms known

– Use heuristics, or exponential-time algorithms

• There are 2poly(k) n algorithms that either:

– Compute a decomposition of width k

– Determine that no such decomposition exists

• Runtime ☹(n) for every fixed k

Preprocessing

• Preprocess G to find a smaller graph G’, such that:

– Path decomposition of G’ can be lifted efficiently to
decomposition of G

– Lifting does not increase the width

Preprocessing

• Preprocess G to find a smaller graph G’, such that:

– Path decomposition of G’ can be lifted efficiently to
decomposition of G

– Lifting does not increase the width

• After preprocessing, find a decomposition for G’ by an
exponential-time algorithm or heuristics

Preprocessing

• Preprocess G to find a smaller graph G’, such that:

– Path decomposition of G’ can be lifted efficiently to
decomposition of G

– Lifting does not increase the width

• After preprocessing, find a decomposition for G’ by an
exponential-time algorithm or heuristics

• We want to give a guarantee on the size of the output

– Kernelization

Preprocessing

• Preprocess G to find a smaller graph G’, such that:

– Path decomposition of G’ can be lifted efficiently to
decomposition of G

– Lifting does not increase the width

• After preprocessing, find a decomposition for G’ by an
exponential-time algorithm or heuristics

• We want to give a guarantee on the size of the output

– Kernelization

• Cannot guarantee output is smaller than input (else P=NP)

Preprocessing

• Preprocess G to find a smaller graph G’, such that:

– Path decomposition of G’ can be lifted efficiently to
decomposition of G

– Lifting does not increase the width

• After preprocessing, find a decomposition for G’ by an
exponential-time algorithm or heuristics

• We want to give a guarantee on the size of the output

– Kernelization

• Cannot guarantee output is smaller than input (else P=NP)

• So given a graph G of “difficulty” k, shrink G to poly(k)

– Afterwards we can shrink no more

Setting realistic goals

• Cannot preprocess G to size poly(pw(G)) without changing
the pathwidth

– Unless NP ⊆ coNP/poly [BDFH’08,D’12]

– k-Pathwidth is AND-compositional

Setting realistic goals

• Cannot preprocess G to size poly(pw(G)) without changing
the pathwidth

– Unless NP ⊆ coNP/poly [BDFH’08,D’12]

– k-Pathwidth is AND-compositional

• Pick a measure for graph difficulty that is larger than pw(G)

Setting realistic goals

• Cannot preprocess G to size poly(pw(G)) without changing
the pathwidth

– Unless NP ⊆ coNP/poly [BDFH’08,D’12]

– k-Pathwidth is AND-compositional

• Pick a measure for graph difficulty that is larger than pw(G)

• Can we shrink to size polynomial in the larger measure?

– For example: size of a minimum vertex cover

– (Vertex set that covers all edges)

The preprocessing story so far …

The preprocessing story so far …

• Lots of work on preprocessing for treewidth

The preprocessing story so far …

• Lots of work on preprocessing for treewidth

• Heuristic reduction rules with experimental evaluations

The preprocessing story so far …

• Lots of work on preprocessing for treewidth

• Heuristic reduction rules with experimental evaluations

• Rules were found to work well in practice

– No theoretical justification

The preprocessing story so far …

• Lots of work on preprocessing for treewidth

• Heuristic reduction rules with experimental evaluations

• Rules were found to work well in practice

– No theoretical justification

• BJK ‘11:

– Existing reduction rules give size reduction to O(VC3)

– With some more rules, size reduction to O(FVS4)

– Heuristic rules have provable effect!

The preprocessing story so far …

• Lots of work on preprocessing for treewidth

• Heuristic reduction rules with experimental evaluations

• Rules were found to work well in practice

– No theoretical justification

• BJK ‘11:

– Existing reduction rules give size reduction to O(VC3)

– With some more rules, size reduction to O(FVS4)

– Heuristic rules have provable effect!

• No prior work on preprocessing for pathwidth

The preprocessing story so far …

• Lots of work on preprocessing for treewidth

• Heuristic reduction rules with experimental evaluations

• Rules were found to work well in practice

– No theoretical justification

• BJK ‘11:

– Existing reduction rules give size reduction to O(VC3)

– With some more rules, size reduction to O(FVS4)

– Heuristic rules have provable effect!

• No prior work on preprocessing for pathwidth

• This work: reduction rules, analysis & lower bounds

Path decomposition

Path decomposition

 b
c f

h a g

Path decomposition

• A path decomposition of a graph G=(V,E) is a sequence
(X1, …, Xr) of subsets of V, called bags, such that:

 b
c f

h a g

Path decomposition

• A path decomposition of a graph G=(V,E) is a sequence
(X1, …, Xr) of subsets of V, called bags, such that:

a a
b

c f h
f

a g g
c

b
c f

h a g

Path decomposition

• A path decomposition of a graph G=(V,E) is a sequence
(X1, …, Xr) of subsets of V, called bags, such that:

– For all v, there is a bag that contains v

a a
b

c f h
f

a g g
c

b
c f

h a g

Path decomposition

• A path decomposition of a graph G=(V,E) is a sequence
(X1, …, Xr) of subsets of V, called bags, such that:

– For all v, there is a bag that contains v

– For all {v,w} E, there is a bag that contains v and w

a a
b

c f h
f

a g g
c

b
c f

h a g

Path decomposition

• A path decomposition of a graph G=(V,E) is a sequence
(X1, …, Xr) of subsets of V, called bags, such that:

– For all v, there is a bag that contains v

– For all {v,w} E, there is a bag that contains v and w

– For all v, the bags that contain v are consecutive

a a
b

c f h
f

a g g
c

b
c f

h a g

Path decomposition

• A path decomposition of a graph G=(V,E) is a sequence
(X1, …, Xr) of subsets of V, called bags, such that:

– For all v, there is a bag that contains v

– For all {v,w} E, there is a bag that contains v and w

– For all v, the bags that contain v are consecutive

a a
b

c f h
f

a g g
c

b
c f

h a g a b
c

d e f
g h

Path decomposition

a a
b

c f h
f

a g g
c

b
c f

h a g a b
c

d e f
g h

Path decomposition

• The width of a path decomposition (X1, …, Xr) is the size of
its largest bag minus one: max1 i r |Xi|-1

a a
b

c f h
f

a g g
c

b
c f

h a g a b
c

d e f
g h

Path decomposition

• The width of a path decomposition (X1, …, Xr) is the size of
its largest bag minus one: max1 i r |Xi|-1

a a
b

c f h
f

a g g
c

b
c f

h a g a b
c

d e f
g h

Width 3-1=2

Path decomposition

• The width of a path decomposition (X1, …, Xr) is the size of
its largest bag minus one: max1 i r |Xi|-1

• The pathwidth of a graph G is the minimum width of a path
decomposition of G

a a
b

c f h
f

a g g
c

b
c f

h a g a b
c

d e f
g h

Width 3-1=2

Path decomposition

• Path/treewidth does not increase when deleting or
contracting edges / vertices

a a
b

c f h
f

a g g
c

b
c f

h a g a b
c

d e f
g h

Width 3-1=2

Path decomposition

• Path/treewidth does not increase when deleting or
contracting edges / vertices

• Treewidth ≤ pathwidth

a a
b

c f h
f

a g g
c

b
c f

h a g a b
c

d e f
g h

Width 3-1=2

Path decomposition

• Path/treewidth does not increase when deleting or
contracting edges / vertices

• Treewidth ≤ pathwidth

• Paths have pathwidth = treewidth = 1

a a
b

c f h
f

a g g
c

b
c f

h a g a b
c

d e f
g h

Width 3-1=2

Path decomposition

• Path/treewidth does not increase when deleting or
contracting edges / vertices

• Treewidth ≤ pathwidth

• Paths have pathwidth = treewidth = 1

• Trees have treewidth 1, but may have pathwidth (log n)

a a
b

c f h
f

a g g
c

b
c f

h a g a b
c

d e f
g h

Width 3-1=2

Problem setting

• Decision problem associated to pathwidth

– Instance: Graph G, integer k.

– Question: Does G have pathwidth ≤ k?

Problem setting

• Decision problem associated to pathwidth

– Instance: Graph G, integer k.

– Question: Does G have pathwidth ≤ k?

• A reduction from G to G’ is safe for pathwidth k if it
preserves whether the graph has pathwidth ≤ k

– (G has pathwidth ≤ k) iff (G’ has pathwidth ≤ k)

Problem setting

• Decision problem associated to pathwidth

– Instance: Graph G, integer k.

– Question: Does G have pathwidth ≤ k?

• A reduction from G to G’ is safe for pathwidth k if it
preserves whether the graph has pathwidth ≤ k

– (G has pathwidth ≤ k) iff (G’ has pathwidth ≤ k)

• Easy to lift decompositions of G’ to G

Problem setting

• Decision problem associated to pathwidth

– Instance: Graph G, integer k.

– Question: Does G have pathwidth ≤ k?

• A reduction from G to G’ is safe for pathwidth k if it
preserves whether the graph has pathwidth ≤ k

– (G has pathwidth ≤ k) iff (G’ has pathwidth ≤ k)

• Easy to lift decompositions of G’ to G

• In practical settings:

– Guess k, or work with upper- and lower bounds

Common neighbors

Treewidth Edge Improvement Rule
If v and w have ≥ k+1 common neighbors in G, then

adding edge {v,w} does not change whether tw(G) ≤ k

Common neighbors

Treewidth Edge Improvement Rule
If v and w have ≥ k+1 common neighbors in G, then

adding edge {v,w} does not change whether tw(G) ≤ k

Common neighbors

Treewidth Edge Improvement Rule
If v and w have ≥ k+1 common neighbors in G, then

adding edge {v,w} does not change whether tw(G) ≤ k

Common neighbors

• Rule originates from Bodlaender’s linear-time algorithm for
Treewidth

Treewidth Edge Improvement Rule
If v and w have ≥ k+1 common neighbors in G, then

adding edge {v,w} does not change whether tw(G) ≤ k

Common neighbors

• Rule originates from Bodlaender’s linear-time algorithm for
Treewidth

• Any width-k tree decomposition has a bag with v and w

– Hence any width-k path decomposition has a {v,w} bag

Treewidth Edge Improvement Rule
If v and w have ≥ k+1 common neighbors in G, then

adding edge {v,w} does not change whether tw(G) ≤ k

Pathwidth Edge Improvement Rule
If v and w have ≥ k+1 common neighbors in G, then

adding edge {v,w} does not change whether pw(G) ≤ k

Common neighbors

• Rule originates from Bodlaender’s linear-time algorithm for
Treewidth

• Any width-k tree decomposition has a bag with v and w

– Hence any width-k path decomposition has a {v,w} bag

Simplicial Vertices

Simplicial Vertices

• A vertex v is simplicial if N(v) is a clique

Simplicial Vertices

• A vertex v is simplicial if N(v) is a clique

Simplicial Vertices

• A vertex v is simplicial if N(v) is a clique

Treewidth Simplicial Vertex Rule
Let v be a simplicial vertex in G.
• If deg(v) ≥ k+1 then tw(G) > k
• If deg(v) ≤ k then deleting v is safe for treewidth k

Simplicial Vertices

• A vertex v is simplicial if N(v) is a clique

Treewidth Simplicial Vertex Rule
Let v be a simplicial vertex in G.
• If deg(v) ≥ k+1 then tw(G) > k
• If deg(v) ≤ k then deleting v is safe for treewidth k

Closed neighborhood of v
is a k+2 clique

Simplicial Vertices

• A vertex v is simplicial if N(v) is a clique

Treewidth Simplicial Vertex Rule
Let v be a simplicial vertex in G.
• If deg(v) ≥ k+1 then tw(G) > k
• If deg(v) ≤ k then deleting v is safe for treewidth k

Simplicial Vertices

• A vertex v is simplicial if N(v) is a clique

Treewidth Simplicial Vertex Rule
Let v be a simplicial vertex in G.
• If deg(v) ≥ k+1 then tw(G) > k
• If deg(v) ≤ k then deleting v is safe for treewidth k

Helly property for trees
ensures that there is a

bag containing N(v)

Simplicial Vertices

Treewidth Simplicial Vertex Rule
Let v be a simplicial vertex in G.
• If deg(v) ≥ k+1 then tw(G) > k
• If deg(v) ≤ k then deleting v is safe for treewidth k

Helly property for trees
ensures that there is a

bag containing N(v)

Simplicial Vertices

Treewidth Simplicial Vertex Rule
Let v be a simplicial vertex in G.
• If deg(v) ≥ k+1 then tw(G) > k
• If deg(v) ≤ k then deleting v is safe for treewidth k

Helly property for trees
ensures that there is a

bag containing N(v)

x
..

x y
..
y

.. N(v)

v
N(v)

Simplicial Vertices

Treewidth Simplicial Vertex Rule
Let v be a simplicial vertex in G.
• If deg(v) ≥ k+1 then tw(G) > k
• If deg(v) ≤ k then deleting v is safe for treewidth k

Helly property for trees
ensures that there is a

bag containing N(v)

x
..

x y
..
y

.. N(v)

v
N(v)

Simplicial Vertices

Treewidth Simplicial Vertex Rule
Let v be a simplicial vertex in G.
• If deg(v) ≥ k+1 then tw(G) > k
• If deg(v) ≤ k then deleting v is safe for treewidth k

Helly property for trees
ensures that there is a

bag containing N(v)

x
..

x y
..
y

.. N(v)

k+1 vertices

v
N(v)

Simplicial Vertices

x
..

x y
..
y

.. N(v)

Pathwidth Simplicial Vertex Rule?
Let v be a simplicial vertex in G.
• If deg(v) ≥ k+1 then pw(G) > k
• If deg(v) ≤ k then deleting v is safe for pathwidth k

k+1 vertices

v
N(v)

Simplicial Vertices

x
..

x y
..
y

.. N(v)

Pathwidth Simplicial Vertex Rule?
Let v be a simplicial vertex in G.
• If deg(v) ≥ k+1 then pw(G) > k
• If deg(v) ≤ k then deleting v is safe for pathwidth k

k+1 vertices

v
N(v)

Simplicial Vertices

x
..

x y
..
y

.. N(v)

Pathwidth Simplicial Vertex Rule?
Let v be a simplicial vertex in G.
• If deg(v) ≥ k+1 then pw(G) > k
• If deg(v) ≤ k then deleting v is safe for pathwidth k

k+1 vertices

Repeated application
would eat up a tree

Degree-one vertices

Degree-one vertices

v w

x

Degree-one vertices

Pathwidth Degree-1 Vertex Rule
If vertex v is only adjacent to x, and
there is another degree-1 vertex w adjacent to x, then
then deleting v is safe for pathwidth k

v w

x

Degree-one vertices

Pathwidth Degree-1 Vertex Rule
If vertex v is only adjacent to x, and
there is another degree-1 vertex w adjacent to x, then
then deleting v is safe for pathwidth k

v w

x

Degree-one vertices

Pathwidth Degree-1 Vertex Rule
If vertex v is only adjacent to x, and
there is another degree-1 vertex w adjacent to x, then
then deleting v is safe for pathwidth k

X1
x X3 X4

w Z

X1
x X3 X4

w Z
x

v Z

v w

x

Pathwidth Simplicial Vertex Rule

Pathwidth Simplicial Vertex Rule

Pathwidth Simplicial Vertex Rule
If v is simplicial with 2 ≤ deg(v) ≤ k, and
∀ {x,y} in N(v), ∃ simplicial vtx ∉ N[v] seeing x and y,
then deleting v is safe for pathwidth k

Effects of the reduction rules

• If G has a vertex cover X of size l, and you work relative to

the structure of X:

– Easy counting arguments prove O(l3) vertices

– (After some trivial rules)

Effects of the reduction rules

• If G has a vertex cover X of size l, and you work relative to

the structure of X:

– Easy counting arguments prove O(l3) vertices

– (After some trivial rules)

• O(l3) when l is the vertex cover number

• O(cl3 + c2l2) when l is the size of a vertex set whose
removal gives components of at most c vertices each

• O(l4) when l is the size of a vertex set whose removal
results in disjoint stars

Polynomial kernels (sizes in # vertices)

A kernelization lower bound

A kernelization lower bound

• Pathwidth of a clique Kt is t-1

A kernelization lower bound

• Pathwidth of a clique Kt is t-1

• Pathwidth is easy for graphs that are “almost” a clique?

– That become a clique after deleting k vertices

A kernelization lower bound

• Pathwidth of a clique Kt is t-1

• Pathwidth is easy for graphs that are “almost” a clique?

– That become a clique after deleting k vertices

Pathwidth and Treewidth do not admit polynomial kernels

parameterized by vertex-deletion distance to a clique
(unless NP ⊆ coNP/poly)

A kernelization lower bound

• Pathwidth of a clique Kt is t-1

• Pathwidth is easy for graphs that are “almost” a clique?

– That become a clique after deleting k vertices

• Builds on the NP-completeness proof for Treewidth and
Pathwidth by Arnborg, Corneil & Proskurowski ‘87

– They reduce Minimum Cut Linear Arrangement to
computing Tree/path width on cobipartite graphs

Pathwidth and Treewidth do not admit polynomial kernels

parameterized by vertex-deletion distance to a clique
(unless NP ⊆ coNP/poly)

A kernelization lower bound

• Pathwidth of a clique Kt is t-1

• Pathwidth is easy for graphs that are “almost” a clique?

– That become a clique after deleting k vertices

• Builds on the NP-completeness proof for Treewidth and
Pathwidth by Arnborg, Corneil & Proskurowski ‘87

– They reduce Minimum Cut Linear Arrangement to
computing Tree/path width on cobipartite graphs

• We build a cross-composition of MinCut on cubic graphs
into tree/pathwidth on a cobipartite graph where one
partite set is small

Pathwidth and Treewidth do not admit polynomial kernels

parameterized by vertex-deletion distance to a clique
(unless NP ⊆ coNP/poly)

A kernelization lower bound

• Pathwidth of a clique Kt is t-1

• Pathwidth is easy for graphs that are “almost” a clique?

– That become a clique after deleting k vertices

• Builds on the NP-completeness proof for Treewidth and
Pathwidth by Arnborg, Corneil & Proskurowski ‘87

– They reduce Minimum Cut Linear Arrangement to
computing Tree/path width on cobipartite graphs

• We build a cross-composition of MinCut on cubic graphs
into tree/pathwidth on a cobipartite graph where one
partite set is small

– Deleting the small set yields a clique

Pathwidth and Treewidth do not admit polynomial kernels

parameterized by vertex-deletion distance to a clique
(unless NP ⊆ coNP/poly)

Details of the construction …

Details of the construction …

Conclusion

Conclusion

• Reduction rules for pathwidth are more complicated than
for treewidth, because the structure is more restricted

Conclusion

• Reduction rules for pathwidth are more complicated than
for treewidth, because the structure is more restricted

• Analysis proves effect of the rules with respect to several
parameters

Conclusion

• Reduction rules for pathwidth are more complicated than
for treewidth, because the structure is more restricted

• Analysis proves effect of the rules with respect to several
parameters

• Pathwidth and treewidth do not admit polynomial kernels
by deletion distance to a clique

Experimental evaluation of the reduction rules

• Kernel with O(k3-) bits for parameterization by vertex cover?

Lower bounds on kernel sizes

• Polynomial kernel for treewidth by FVS

• Trees have constant treewidth but potentially large pathwidth

Pathwidth parameterized by feedback vertex set

Future directions

Experimental evaluation of the reduction rules

• Kernel with O(k3-) bits for parameterization by vertex cover?

Lower bounds on kernel sizes

• Polynomial kernel for treewidth by FVS

• Trees have constant treewidth but potentially large pathwidth

Pathwidth parameterized by feedback vertex set

Future directions

