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What is pathwidth?

Measure of how “path-like” a graph is
— Related to treewidth (“tree-like”)
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 Measure of how “path-like” a graph is
— Related to treewidth (“tree-like”)

« Gives the quality of a path decomposition, a
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What is pathwidth?

 Measure of how “path-like” a graph is
— Related to treewidth (“tree-like”)

« Gives the quality of a path decomposition, a
decomposition of a graph into pieces arranged on a path

- Both pathwidth and treewidth have been introduced many
times under different names

— (vertex separation number, node search number, partial
k-tree, etc ...)
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What is pathwidth?

Measure of how “path-like” a graph is
— Related to treewidth (“tree-like”)

Gives the quality of a path decomposition, a
decomposition of a graph into pieces arranged on a path

Both pathwidth and treewidth have been introduced many
times under different names

— (vertex separation number, node search number, partial
k-tree, etc ...)

Play crucial roles in Robertson & Seymour’s proof of the
Graph Minor Theorem
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Why is it important?

« Many graph problems can be solved efficiently (in linear
time) if a path or tree decomposition of small width is
known
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Why is it important?

« Many graph problems can be solved efficiently (in linear
time) if a path or tree decomposition of small width is

known
« When comparing pathwidth to treewidth:

— Path decompositions have larger width

— Dynamic programming algorithms for path
decompositions are simpler and use less memory
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Why is it important?

« Many graph problems can be solved efficiently (in linear
time) if a path or tree decomposition of small width is
known

« When comparing pathwidth to treewidth:
— Path decompositions have larger width

— Dynamic programming algorithms for path
decompositions are simpler and use less memory

« Important to find low-width path and tree decompositions
efficiently
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Finding good decompositions is hard

« Computing pathwidth or treewidth of a graph is NP-
complete

— Pathwidth is even NP-complete on planar graphs
— Treewidth of planar graphs is open
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Finding good decompositions is hard

« Computing pathwidth or treewidth of a graph is NP-
complete

— Pathwidth is even NP-complete on planar graphs
— Treewidth of planar graphs is open

« No constant-factor approximation algorithms known
— Use heuristics, or exponential-time algorithms
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Finding good decompositions is hard

« Computing pathwidth or treewidth of a graph is NP-
complete

— Pathwidth is even NP-complete on planar graphs
— Treewidth of planar graphs is open

« No constant-factor approximation algorithms known
— Use heuristics, or exponential-time algorithms

« There are 2rolv(k) n algorithms that either:
— Compute a decomposition of width k
— Determine that no such decomposition exists

Runtime ®(n) for every fixed k
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Preprocessing

- Preprocess G to find a smaller graph G, such that:

— Path decomposition of G can be lifted efficiently to
decomposition of G

— Lifting does not increase the width
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— Path decomposition of G can be lifted efficiently to
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« After preprocessing, find a decomposition for G" by an
exponential-time algorithm or heuristics
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Preprocessing
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— Path decomposition of G can be lifted efficiently to
decomposition of G

— Lifting does not increase the width

After preprocessing, find a decomposition for G" by an
exponential-time algorithm or heuristics

We want to give a guarantee on the size of the output
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Preprocessing

Preprocess G to find a smaller graph G’, such that:

— Path decomposition of G can be lifted efficiently to
decomposition of G

— Lifting does not increase the width

« After preprocessing, find a decomposition for G" by an
exponential-time algorithm or heuristics

« We want to give a guarantee on the size of the output
— Kernelization
« Cannot guarantee output is smaller than input (else P=NP)
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Preprocessing

Preprocess G to find a smaller graph G’, such that:

— Path decomposition of G can be lifted efficiently to
decomposition of G

— Lifting does not increase the width

« After preprocessing, find a decomposition for G" by an
exponential-time algorithm or heuristics

« We want to give a guarantee on the size of the output

— Kernelization
« Cannot guarantee output is smaller than input (else P=NP)
« So given a graph G of “difficulty” k, shrink G to poly(k)

— Afterwards we can shrink no more
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Setting realistic goals

« Cannot preprocess G to size poly(pw(G)) without changing
the pathwidth

— Unless NP € coNP/poly [BDFH'08,D12]
— k-Pathwidth is AND-compositional
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Setting realistic goals

« Cannot preprocess G to size poly(pw(G)) without changing
the pathwidth

— Unless NP € coNP/poly [BDFH'08,D12]
— k-Pathwidth is AND-compositional
« Pick a measure for graph difficulty that is larger than pw(G)
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Setting realistic goals

« Cannot preprocess G to size poly(pw(G)) without changing
the pathwidth

— Unless NP € coNP/poly [BDFH'08,D12]

— k-Pathwidth is AND-compositional
« Pick a measure for graph difficulty that is larger than pw(G)
« Can we shrink to size polynomial in the larger measure?

— For example: size of a minimum vertex cover

— (Vertex set that covers all edges)
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The preprocessing story so far ...
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The preprocessing story so far ...

« Lots of work on preprocessing for treewidth
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The preprocessing story so far ...

Lots of work on preprocessing for treewidth

Heuristic reduction rules with experimental evaluations
Rules were found to work well in practice

— No theoretical justification
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The preprocessing story so far ...

« Lots of work on preprocessing for treewidth
« Heuristic reduction rules with experimental evaluations
« Rules were found to work well in practice
— No theoretical justification
« BIK'11:
— Existing reduction rules give size reduction to O(VC3)
— With some more rules, size reduction to O(FVS%)
— Heuristic rules have provable effect!
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The preprocessing story so far ...

« Lots of work on preprocessing for treewidth
« Heuristic reduction rules with experimental evaluations
« Rules were found to work well in practice
— No theoretical justification
« BIK'11:
— Existing reduction rules give size reduction to O(VC3)
— With some more rules, size reduction to O(FVS%)
— Heuristic rules have provable effect!
 No prior work on preprocessing for pathwidth
« This work: reduction rules, analysis & lower bounds
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Path decomposition
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Path decomposition

« A path decomposition of a graph G=(V,E) is a sequence
(X4, ..., X,) of subsets of V, called bags, such that:
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Path decomposition

« A path decomposition of a graph G=(V,E) is a sequence
(X4, ..., X,) of subsets of V, called bags, such that:
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Path decomposition

« A path decomposition of a graph G=(V,E) is a sequence
(X4, ..., X,) of subsets of V, called bags, such that:

— For all v, there is a bag that contains v
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Path decomposition

« A path decomposition of a graph G=(V,E) is a sequence
(X4, ..., X,) of subsets of V, called bags, such that:

— For all v, there is a bag that contains v
— For all {v,w} € E, there is a bag that contains v and w
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Path decomposition

« A path decomposition of a graph G=(V,E) is a sequence
(X4, ..., X,) of subsets of V, called bags, such that:

— For all v, there is a bag that contains v
— For all {v,w} € E, there is a bag that contains v and w
— For all v, the bags that contain v are consecutive
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Path decomposition

« A path decomposition of a graph G=(V,E) is a sequence
(X4, ..., X,) of subsets of V, called bags, such that:

— For all v, there is a bag that contains v
— For all {v,w} € E, there is a bag that contains v and w
— For all v, the bags that contain v are consecutive
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Path decomposition

- The width of a path decomposition (X4, ..., X,) is the size of
its largest bag minus one: max; .. |Xi|-1
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Path decomposition

- The width of a path decomposition (X4, ..., X,) is the size of
its largest bag minus one: max; .. |Xi|-1
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Path decomposition

- The width of a path decomposition (X4, ..., X,) is the size of
its largest bag minus one: max; .. |Xi|-1

« The pathwidth of a graph G is the minimum width of a path
decomposition of G

|
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Path decomposition

Path/treewidth does not increase when deleting or
contracting edges / vertices

d
Width 3-1=2
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Path decomposition

« Path/treewidth does not increase when deleting or
contracting edges / vertices

« Treewidth < pathwidth
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Path decomposition

« Path/treewidth does not increase when deleting or
contracting edges / vertices

« Treewidth < pathwidth
« Paths have pathwidth = treewidth = 1
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Path decomposition

« Path/treewidth does not increase when deleting or
contracting edges / vertices

« Treewidth < pathwidth
« Paths have pathwidth = treewidth = 1
» Trees have treewidth 1, but may have pathwidth ©(log n)

Width 3-1=2
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Problem setting

« Decision problem associated to pathwidth
— Instance: Graph G, integer k.
— Question: Does G have pathwidth < k?
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Problem setting

« Decision problem associated to pathwidth
— Instance: Graph G, integer k.
— Question: Does G have pathwidth < k?

* A reduction from G to G’ is safe for pathwidth k if it
preserves whether the graph has pathwidth < k

— (G has pathwidth < k) iff (G’ has pathwidth < k)
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Problem setting

Decision problem associated to pathwidth
— Instance: Graph G, integer k.
— Question: Does G have pathwidth < k?

A reduction from G to G’ is safe for pathwidth k if it
preserves whether the graph has pathwidth < k

— (G has pathwidth < k) iff (G’ has pathwidth < k)

Easy to lift decompositions of G' to G
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Problem setting

Decision problem associated to pathwidth
— Instance: Graph G, integer k.
— Question: Does G have pathwidth < k?

A reduction from G to G’ is safe for pathwidth k if it
preserves whether the graph has pathwidth < k

— (G has pathwidth < k) iff (G’ has pathwidth < k)

Easy to lift decompositions of G' to G
In practical settings:
— Guess k, or work with upper- and lower bounds
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Common neighbors
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Common neighbors

Treewidth Edge Improvement Rule
If vand w have > k+1 common neighbors in G, then
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Common neighbors

Treewidth Edge Improvement Rule
If vand w have = k+1 common neighbors in G, then




Common neighbors

* Rule originates from Bodlaender’s linear-time algorithm for
Treewidth

Treewidth Edge Improvement Rule
If vand w have > k+1 common neighbors in G, then




Common neighbors

* Rule originates from Bodlaender’s linear-time algorithm for
Treewidth

 Any width-k tree decomposition has a bag with v and w
— Hence any width-k path decomposition has a {v,w} bag

Treewidth Edge Improvement Rule
If vand w have > k+1 common neighbors in G, then
adding edge {v,w} does not change whether tw(G) < k

U w. v w.
% %
AW
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Common neighbors

* Rule originates from Bodlaender’s linear-time algorithm for
Treewidth

 Any width-k tree decomposition has a bag with v and w
— Hence any width-k path decomposition has a {v,w} bag

Pathwidth Edge Improvement Rule
If vand w have > k+1 common neighbors in G, then
~adding edge {v,w} does not change whether pw(G) <k

%A\ DA

'7 Universiteit Utrecht




Simplicial Vertices
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Simplicial Vertices

« A vertex v is simplicial if N(v) is a clique
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Simplicial Vertices

« A vertex v is simplicial if N(v) is a clique
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« A vertex v is simplicial if N(v) is a clique

Treewidth Simplicial Vertex Rule
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Simplicial Vertices

« A vertex v is simplicial if N(v) is a clique

. . s Helly property for trees
Treewidth Simplicial Vertex Rt oncures that there is 3

Let v be a simplicial vertex in G bag containing N(v)

e If deg(v) = k+1 then tw(G) > k—/
* If deg(v) < k then deleting v is safe for treewidth k
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Simplicial Vertices

! . e Helly property for trees
Treewidth Simplicial Vertex R ;




Simplicial Vertices
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Simplicial Vertices

! . e Helly property for trees
Treewidth Simplicial Vertex R ;




Simplicial Vertices

]— k+1 vertices

! . e Helly property for trees
Treewidth Simplicial Vertex R ;




Simplicial Vertices

Pathwidth Simplicial Vertex Rule?

Let v be a simplicial vertex in G.

e If deg(v) = k+1 then pw(G) > k

* If deg(v) < k then deleting v is safe for pathwidth k
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Simplicial Vertices

]» k+1 vertices

Pathwidth Simplicial Vertex Rule?

Let v be a simplicial vertex in G.

e If deg(v) = k+1 then pw(G) > k

 If deg( } = '~ +hen deleting v is safe for na+b-—dth k
B
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Simplicial Vertices

]» k+1 vertices

Let v be a simplicial vertex in G. would eat up a tree

* If deg(v) = k+1 then pw(G) >k
e |f degwm k

I

Pathwidth Simplicial Vertex Rul Repeated application
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Degree-one vertices
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Degree-one vertices
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Degree-one vertices

Pathwidth Degree-1 Vertex Rule
If vertex v is only adjacent to x, and
there is another degree-1 vertex w adjacent to x, then

then deleting v is safe for pathwidth k
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Pathwidth Degree-1 Vertex Rule
If vertex v is only adjacent to x, and
there is another degree-1 vertex w adjacent to x, then

then deleting v is safe for pathwidth k
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Degree-one vertices

Pathwidth Degree-1 Vertex Rule
If vertex v is only adjacent to x, and
there is another degree-1 vertex w adjacent to x, then

then deleting v is safe for pathwidth k
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Pathwidth Simplicial Vertex Rule
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Pathwidth Simplicial Vertex Rule

Pathwidth Simplicial Vertex Rule

If v is simplicial with 2 < deg(v) <k, and

V {x,y} in N(v), 3 simplicial vtx & N[v] seeing x and y,
then deleting v is safe for pathwidth k
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Effects of the reduction rules

« If G has a vertex cover X of size ¢, and you work relative to
the structure of X:

— Easy counting arguments prove O(¢3) vertices
— (After some trivial rules)
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Effects of the reduction rules

« If G has a vertex cover X of size ¢, and you work relative to

the structure of X:
— Easy counting arguments prove O(¢3) vertices

— (After some trivial rules)

Ve

—L Polynomial kernels (sizes in # vertices)

e O(£3) when Lis the vertex cover number

e O(c? + c??) when Lis the size of a vertex set whose
removal gives components of at most c vertices each

e O(£%) when £is the size of a vertex set whose removal
results in disjoint stars
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A kernelization lower bound
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A kernelization lower bound

- Pathwidth of a clique K, is t-1
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A kernelization lower bound

- Pathwidth of a clique K. is t-1
« Pathwidth is easy for graphs that are “almost” a clique?
— That become a clique after deleting k vertices
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— They reduce Minimum Cut Linear Arrangement to
computing Tree/path width on cobipartite graphs
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A kernelization lower bound

- Pathwidth of a clique K; is t-1
« Pathwidth is easy for graphs that are “almost” a clique?
— That become a clique after deleting k vertices

« Builds on the NP-completeness proof for Treewidth and
Pathwidth by Arnborg, Corneil & Proskurowski ‘87

— They reduce Minimum Cut Linear Arrangement to
computing Tree/path width on cobipartite graphs

« We build a cross-composition of MinCut on cubic graphs
into tree/pathwidth on a cobipartite graph where one
partite set is small

— Deleting the small set yields a clique

Pathwidth and Treewidth do not admit polynomial kernels

parameterized by vertex-deletion distance to a clique
a (unless NP S coNP/poly)




Details of the construction ...
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Conclusion

« Reduction rules for pathwidth are more complicated than
for treewidth, because the structure is more restricted
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Conclusion

« Reduction rules for pathwidth are more complicated than
for treewidth, because the structure is more restricted

« Analysis proves effect of the rules with respect to several
parameters
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Conclusion

« Reduction rules for pathwidth are more complicated than
for treewidth, because the structure is more restricted

« Analysis proves effect of the rules with respect to several
parameters

« Pathwidth and treewidth do not admit polynomial kernels
by deletion distance to a clique
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Future directions

%

Experimental evaluation of the reduction rules

%

Lower bounds on kernel sizes
4

e Kernel with O(k3#) bits for parameterization by vertex cover?

Pathwidth parameterized by feedback vertex set
J

e Polynomial kernel for treewidth by FVS
e Trees have constant treewidth but potentially large pathwidth
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Future directions

—{ Experimental evaluation of the reduction rules

/

Lower bo

THANKYOU!
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e Polynomial kernel for treewidth by FVS
e Trees have constant treewidth but potentially large pathwidth
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