Kernel Bounds for Structural Parameterizations of Pathwidth

Bart M. P. Jansen

Joint work with
Hans L. Bodlaender \& Stefan Kratsch

Universiteit Utrecht

July 6th 2012, SWAT 2012, Helsinki

What is pathwidth?

What is pathwidth?

Predominont Path Pucooss:

- Typical circumstances of use

Commuting ond Locol Access

- Constrainad conditions
. Tiden flow'
- Low use

What is pathwidth?

Predominont Path Pucops:

- Typical circumstances of use

Commuting ond Locol Access

- Constrainad conditiona
. Trider flow'
- Low use

Mojor Recreationol Poth
. $20 \mathrm{~km} / \mathrm{h}$

- Heovy \& concurrent use in both directions

What is pathwidth?

Universiteit Utrecht

What is pathwidth?

- Measure of how "path-like" a graph is
- Related to treewidth ("tree-like")

What is pathwidth?

- Measure of how "path-like" a graph is
- Related to treewidth ("tree-like")
- Gives the quality of a path decomposition, a decomposition of a graph into pieces arranged on a path

What is pathwidth?

- Measure of how "path-like" a graph is
- Related to treewidth ("tree-like")
- Gives the quality of a path decomposition, a decomposition of a graph into pieces arranged on a path
- Both pathwidth and treewidth have been introduced many times under different names
- (vertex separation number, node search number, partial k-tree, etc ...)

What is pathwidth?

- Measure of how "path-like" a graph is
- Related to treewidth ("tree-like")
- Gives the quality of a path decomposition, a decomposition of a graph into pieces arranged on a path
- Both pathwidth and treewidth have been introduced many times under different names
- (vertex separation number, node search number, partial k-tree, etc ...)
- Play crucial roles in Robertson \& Seymour's proof of the Graph Minor Theorem

Why is it important?

- Many graph problems can be solved efficiently (in linear time) if a path or tree decomposition of small width is known

Why is it important?

- Many graph problems can be solved efficiently (in linear time) if a path or tree decomposition of small width is known
- When comparing pathwidth to treewidth:
- Path decompositions have larger width
- Dynamic programming algorithms for path decompositions are simpler and use less memory

Why is it important?

- Many graph problems can be solved efficiently (in linear time) if a path or tree decomposition of small width is known
- When comparing pathwidth to treewidth:
- Path decompositions have larger width
- Dynamic programming algorithms for path decompositions are simpler and use less memory
- Important to find low-width path and tree decompositions efficiently

Finding good decompositions is hard

- Computing pathwidth or treewidth of a graph is NPcomplete
- Pathwidth is even NP-complete on planar graphs
- Treewidth of planar graphs is open

Finding good decompositions is hard

- Computing pathwidth or treewidth of a graph is NPcomplete
- Pathwidth is even NP-complete on planar graphs
- Treewidth of planar graphs is open
- No constant-factor approximation algorithms known
- Use heuristics, or exponential-time algorithms

Finding good decompositions is hard

- Computing pathwidth or treewidth of a graph is NPcomplete
- Pathwidth is even NP-complete on planar graphs
- Treewidth of planar graphs is open
- No constant-factor approximation algorithms known
- Use heuristics, or exponential-time algorithms
- There are $2^{\text {poly(k) }} \mathrm{n}$ algorithms that either:
- Compute a decomposition of width k
- Determine that no such decomposition exists

Finding good decompositions is hard

- Computing pathwidth or treewidth of a graph is NPcomplete
- Pathwidth is even NP-complete on planar graphs
- Treewidth of planar graphs is open
- No constant-factor approximation algorithms known
- Use heuristics, or exponential-time algorithms
- There are $2^{\text {poly(k) }} \mathrm{n}$ algorithms that either:
- Compute a decomposition of width k
- Determine that no such decomposition exists
- Runtime $)_{(n)}$ for every fixed k

Preprocessing

- Preprocess G to find a smaller graph G^{\prime}, such that:
- Path decomposition of G^{\prime} can be lifted efficiently to decomposition of G
- Lifting does not increase the width

Preprocessing

- Preprocess G to find a smaller graph G^{\prime}, such that:
- Path decomposition of G^{\prime} can be lifted efficiently to decomposition of G
- Lifting does not increase the width
- After preprocessing, find a decomposition for G' by an exponential-time algorithm or heuristics

Preprocessing

- Preprocess G to find a smaller graph G^{\prime}, such that:
- Path decomposition of G^{\prime} can be lifted efficiently to decomposition of G
- Lifting does not increase the width
- After preprocessing, find a decomposition for G^{\prime} by an exponential-time algorithm or heuristics
- We want to give a guarantee on the size of the output - Kernelization

Preprocessing

- Preprocess G to find a smaller graph G^{\prime}, such that:
- Path decomposition of G^{\prime} can be lifted efficiently to decomposition of G
- Lifting does not increase the width
- After preprocessing, find a decomposition for G^{\prime} by an exponential-time algorithm or heuristics
- We want to give a guarantee on the size of the output - Kernelization
- Cannot guarantee output is smaller than input (else $\mathrm{P}=\mathrm{NP}$)

Preprocessing

- Preprocess G to find a smaller graph G^{\prime}, such that:
- Path decomposition of G^{\prime} can be lifted efficiently to decomposition of G
- Lifting does not increase the width
- After preprocessing, find a decomposition for G' by an exponential-time algorithm or heuristics
- We want to give a guarantee on the size of the output - Kernelization
- Cannot guarantee output is smaller than input (else $\mathrm{P}=\mathrm{NP}$)
- So given a graph G of "difficulty" k, shrink G to poly(k)
- Afterwards we can shrink no more

Setting realistic goals

- Cannot preprocess G to size poly(pw(G)) without changing the pathwidth
- Unless NP \subseteq coNP/poly [BDFH'08,D'12]
- k-Pathwidth is AND-compositional

Setting realistic goals

- Cannot preprocess G to size poly(pw(G)) without changing the pathwidth
- Unless NP \subseteq coNP/poly [BDFH'08,D'12]
- k-Pathwidth is AND-compositional
- Pick a measure for graph difficulty that is larger than pw(G)

Setting realistic goals

- Cannot preprocess G to size poly(pw(G)) without changing the pathwidth
- Unless NP \subseteq coNP/poly [BDFH'08,D'12]
- k-Pathwidth is AND-compositional
- Pick a measure for graph difficulty that is larger than pw(G)
- Can we shrink to size polynomial in the larger measure?
- For example: size of a minimum vertex cover
- (Vertex set that covers all edges)

The preprocessing story so far ...

The preprocessing story so far ...

- Lots of work on preprocessing for treewidth

The preprocessing story so far ...

- Lots of work on preprocessing for treewidth
- Heuristic reduction rules with experimental evaluations

The preprocessing story so far

- Lots of work on preprocessing for treewidth
- Heuristic reduction rules with experimental evaluations
- Rules were found to work well in practice
- No theoretical justification

The preprocessing story so far ...

- Lots of work on preprocessing for treewidth
- Heuristic reduction rules with experimental evaluations
- Rules were found to work well in practice
- No theoretical justification
- BJK `11:
- Existing reduction rules give size reduction to $\mathrm{O}\left(\mathrm{VC}^{3}\right)$
- With some more rules, size reduction to O(FVS ${ }^{4}$)
- Heuristic rules have provable effect!

The preprocessing story so far ...

- Lots of work on preprocessing for treewidth
- Heuristic reduction rules with experimental evaluations
- Rules were found to work well in practice
- No theoretical justification
- BJK `11:
- Existing reduction rules give size reduction to $\mathrm{O}\left(\mathrm{VC}^{3}\right)$
- With some more rules, size reduction to O(FVS ${ }^{4}$)
- Heuristic rules have provable effect!
- No prior work on preprocessing for pathwidth

The preprocessing story so far ...

- Lots of work on preprocessing for treewidth
- Heuristic reduction rules with experimental evaluations
- Rules were found to work well in practice
- No theoretical justification
- BJK `11:
- Existing reduction rules give size reduction to $\mathrm{O}\left(\mathrm{VC}^{3}\right)$
- With some more rules, size reduction to O(FVS ${ }^{4}$)
- Heuristic rules have provable effect!
- No prior work on preprocessing for pathwidth
- This work: reduction rules, analysis \& lower bounds

Path decomposition

Path decomposition

Path decomposition

- A path decomposition of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a sequence ($\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{r}}$) of subsets of V , called bags, such that:

Path decomposition

- A path decomposition of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a sequence ($\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{r}}$) of subsets of V , called bags, such that:

Path decomposition

- A path decomposition of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a sequence (X_{1}, \ldots, X_{r}) of subsets of V, called bags, such that:
- For all v, there is a bag that contains v

Path decomposition

- A path decomposition of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a sequence (X_{1}, \ldots, X_{r}) of subsets of V, called bags, such that:
- For all v, there is a bag that contains v
- For all $\{v, w\} \in E$, there is a bag that contains v and w

Path decomposition

- A path decomposition of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a sequence (X_{1}, \ldots, X_{r}) of subsets of V, called bags, such that:
- For all v, there is a bag that contains v
- For all $\{v, w\} \in E$, there is a bag that contains v and w
- For all v, the bags that contain v are consecutive

Path decomposition

- A path decomposition of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a sequence (X_{1}, \ldots, X_{r}) of subsets of V, called bags, such that:
- For all v, there is a bag that contains v
- For all $\{v, w\} \in E$, there is a bag that contains v and w
- For all v, the bags that contain v are consecutive

Path decomposition

Path decomposition

- The width of a path decomposition $\left(X_{1}, \ldots, X_{r}\right)$ is the size of its largest bag minus one: $\max _{1 \leq i \leq r}\left|X_{i}\right|-1$

Path decomposition

- The width of a path decomposition $\left(X_{1}, \ldots, X_{r}\right)$ is the size of its largest bag minus one: $\max _{1 \leq i \leq r}\left|X_{i}\right|-1$

Path decomposition

- The width of a path decomposition $\left(X_{1}, \ldots, X_{r}\right)$ is the size of its largest bag minus one: $\max _{1 \leq i \leq r}\left|X_{i}\right|-1$
- The pathwidth of a graph G is the minimum width of a path decomposition of G

Path decomposition

- Path/treewidth does not increase when deleting or contracting edges / vertices

Path decomposition

- Path/treewidth does not increase when deleting or contracting edges / vertices
- Treewidth \leq pathwidth

Path decomposition

- Path/treewidth does not increase when deleting or contracting edges / vertices
- Treewidth \leq pathwidth
- Paths have pathwidth = treewidth = 1

Path decomposition

- Path/treewidth does not increase when deleting or contracting edges / vertices
- Treewidth \leq pathwidth
- Paths have pathwidth = treewidth = 1
- Trees have treewidth 1, but may have pathwidth $\Theta(\log n)$

Problem setting

- Decision problem associated to pathwidth
- Instance: Graph G, integer k.
- Question: Does G have pathwidth $\leq k$?

Problem setting

- Decision problem associated to pathwidth
- Instance: Graph G, integer k.
- Question: Does G have pathwidth \leq k?
- A reduction from G to G^{\prime} is safe for pathwidth \mathbf{k} if it preserves whether the graph has pathwidth $\leq k$
- (G has pathwidth $\leq k$) iff (G^{\prime} has pathwidth $\leq k$)

Problem setting

- Decision problem associated to pathwidth
- Instance: Graph G, integer k.
- Question: Does G have pathwidth $\leq k$?
- A reduction from G to G^{\prime} is safe for pathwidth \mathbf{k} if it preserves whether the graph has pathwidth $\leq k$
- (G has pathwidth $\leq k$) iff (G^{\prime} has pathwidth $\leq k$)
- Easy to lift decompositions of G^{\prime} to G

Problem setting

- Decision problem associated to pathwidth
- Instance: Graph G, integer k.
- Question: Does G have pathwidth $\leq k$?
- A reduction from G to G^{\prime} is safe for pathwidth \mathbf{k} if it preserves whether the graph has pathwidth $\leq k$
- (G has pathwidth $\leq k$) iff (G^{\prime} has pathwidth $\leq k$)
- Easy to lift decompositions of G^{\prime} to G
- In practical settings:
- Guess k, or work with upper- and lower bounds

Common neighbors

Common neighbors

Treewidth Edge Improvement Rule

If v and w have $\geq k+1$ common neighbors in G, then adding edge $\{\mathrm{v}, \mathrm{w}\}$ does not change whether $\mathrm{tw}(\mathrm{G}) \leq \mathrm{k}$

Common neighbors

Treewidth Edge Improvement Rule

If v and w have $\geq k+1$ common neighbors in G, then adding edge $\{\mathrm{v}, \mathrm{w}\}$ does not change whether $\mathrm{tw}(\mathrm{G}) \leq \mathrm{k}$

Common neighbors

- Rule originates from Bodlaender's linear-time algorithm for Treewidth

Treewidth Edge Improvement Rule

If v and w have $\geq k+1$ common neighbors in G, then adding edge $\{\mathrm{v}, \mathrm{w}\}$ does not change whether $\mathrm{tw}(\mathrm{G}) \leq \mathrm{k}$

Universiteit Utrecht

Common neighbors

- Rule originates from Bodlaender's linear-time algorithm for Treewidth
- Any width-k tree decomposition has a bag with v and w
- Hence any width-k path decomposition has a $\{v, w\}$ bag

Treewidth Edge Improvement Rule

If v and w have $\geq k+1$ common neighbors in G, then adding edge $\{\mathrm{v}, \mathrm{w}\}$ does not change whether $\mathrm{tw}(\mathrm{G}) \leq \mathrm{k}$

Common neighbors

- Rule originates from Bodlaender's linear-time algorithm for Treewidth
- Any width-k tree decomposition has a bag with v and w
- Hence any width-k path decomposition has a $\{v, w\}$ bag

Pathwidth Edge Improvement Rule

If v and w have $\geq k+1$ common neighbors in G, then adding edge $\{v, w\}$ does not change whether $p w(G) \leq k$

Simplicial Vertices

Simplicial Vertices

- A vertex v is simplicial if $N(v)$ is a clique

Simplicial Vertices

- A vertex v is simplicial if $N(v)$ is a clique

Simplicial Vertices

- A vertex v is simplicial if $N(v)$ is a clique

Treewidth Simplicial Vertex Rule
Let v be a simplicial vertex in G.

- If $\operatorname{deg}(v) \geq k+1$ then $t w(G)>k$
- If $\operatorname{deg}(v) \leq k$ then deleting v is safe for treewidth k

Simplicial Vertices

- A vertex v is simplicial if $N(v)$ is a clique

Closed neighborhood of v
Treewidth Simplicial Vertex Rı is a $k+2$ clique
Let \vee be a simplicial vertex in G.

- If $\operatorname{deg}(v) \geq k+1$ then $t w(G)>k$
- If $\operatorname{deg}(v) \leq k$ then deleting v is safe for treewidth k

Simplicial Vertices

- A vertex v is simplicial if $N(v)$ is a clique

Treewidth Simplicial Vertex Rule
Let v be a simplicial vertex in G.

- If $\operatorname{deg}(v) \geq k+1$ then $t w(G)>k$
- If $\operatorname{deg}(v) \leq k$ then deleting v is safe for treewidth k

Simplicial Vertices

- A vertex v is simplicial if $N(v)$ is a clique

Treewidth Simplicial Vertex Rı Let v be a simplicial vertex in G

- If $\operatorname{deg}(v) \geq k+1$ then $\operatorname{tw}(G)>k$
- If $\operatorname{deg}(v) \leq k$ then deleting v is safe for treewidth k

Simplicial Vertices

Treewidth Simplicial Vertex Rı
Let v be a simplicial vertex in G

Helly property for trees ensures that there is a bag containing $\mathrm{N}(\mathrm{v})$

- If $\operatorname{deg}(v) \geq k+1$ then $t w(G)>k$
- If $\operatorname{deg}(v) \leq k$ then deleting v is safe for treewidth k

Simplicial Vertices

Treewidth Simplicial Vertex Rı Let v be a simplicial vertex in G Helly property for trees ensures that there is a bag containing $\mathrm{N}(\mathrm{v})$

- If $\operatorname{deg}(v) \geq k+1$ then $t w(G)>k$
- If $\operatorname{deg}(v) \leq k$ then deleting v is safe for treewidth k

Simplicial Vertices

Treewidth Simplicial Vertex Rı Let v be a simplicial vertex in G

Helly property for trees ensures that there is a bag containing $N(v)$

- If $\operatorname{deg}(v) \geq k+1$ then $t w(G)>k$
- If $\operatorname{deg}(v) \leq k$ then deleting v is safe for treewidth k

Simplicial Vertices

Treewidth Simplicial Vertex Rı Let v be a simplicial vertex in G

Helly property for trees ensures that there is a bag containing $\mathrm{N}(\mathrm{v})$

- If $\operatorname{deg}(v) \geq k+1$ then $\operatorname{tw}(G)>k$
- If $\operatorname{deg}(v) \leq k$ then deleting v is safe for treewidth k

Simplicial Vertices

Pathwidth Simplicial Vertex Rule?

Let v be a simplicial vertex in G.

- If $\operatorname{deg}(v) \geq k+1$ then $p w(G)>k$
- If $\operatorname{deg}(v) \leq k$ then deleting v is safe for pathwidth k

Simplicial Vertices

Pathwidth Simplicial Vertex Rule?

Let v be a simplicial vertex in G.

- If $\operatorname{deg}(v) \geq k+1$ then $p w(G)>k$
- If $\operatorname{deg}(-1-k$ thon deleting v is safe far nath.... d th k

Simplicial Vertices

Pathwidth Simplicial Vertex Rul

Repeated application would eat up a tree Let v be a simplicial vertex in G.

- If $\operatorname{deg}(v) \geq k+1$ then $p w(G)>k$
- If $\operatorname{deg}(-1-k$ thon deleting v is sine for nath.... d th k

Degree-one vertices

Degree-one vertices

Degree-one vertices

Pathwidth Degree-1 Vertex Rule

If vertex v is only adjacent to x, and there is another degree- 1 vertex w adjacent to x, then then deleting v is safe for pathwidth k

Degree-one vertices

Pathwidth Degree-1 Vertex Rule

If vertex v is only adjacent to x, and there is another degree- 1 vertex w adjacent to x, then then deleting v is safe for pathwidth k

Degree-one vertices

Pathwidth Degree-1 Vertex Rule
If vertex v is only adjacent to x, and there is another degree- 1 vertex w adjacent to x, then then deleting v is safe for pathwidth k

Pathwidth Simplicial Vertex Rule

Pathwidth Simplicial Vertex Rule

Pathwidth Simplicial Vertex Rule

If v is simplicial with $2 \leq \operatorname{deg}(v) \leq k$, and
$\forall\{x, y\}$ in $N(v), \exists$ simplicial $v t x \notin N[v]$ seeing x and y, then deleting v is safe for pathwidth k

Effects of the reduction rules

- If G has a vertex cover X of size ℓ, and you work relative to the structure of X :
- Easy counting arguments prove $\mathrm{O}\left(\ell^{3}\right)$ vertices
- (After some trivial rules)

Effects of the reduction rules

- If G has a vertex cover X of size ℓ, and you work relative to the structure of X :
- Easy counting arguments prove $\mathrm{O}\left(\ell^{3}\right)$ vertices
- (After some trivial rules)

Polynomial kernels (sizes in \# vertices)

- $O\left(\ell^{3}\right)$ when ℓ is the vertex cover number
- $\mathrm{O}\left(c l^{3}+c^{2} \ell^{2}\right)$ when ℓ is the size of a vertex set whose removal gives components of at most c vertices each
- $O\left(\ell^{4}\right)$ when ℓ is the size of a vertex set whose removal results in disjoint stars

A kernelization lower bound

A kernelization lower bound

- Pathwidth of a clique K_{t} is $\mathrm{t}-1$

A kernelization lower bound

- Pathwidth of a clique K_{t} is $\mathrm{t}-1$
- Pathwidth is easy for graphs that are "almost" a clique?
- That become a clique after deleting k vertices

A kernelization lower bound

- Pathwidth of a clique K_{t} is $t-1$
- Pathwidth is easy for graphs that are "almost" a clique?
- That become a clique after deleting k vertices

Pathwidth and Treewidth do not admit polynomial kernels parameterized by vertex-deletion distance to a clique (unless NP \subseteq coNP/poly)

A kernelization lower bound

- Pathwidth of a clique K_{t} is $t-1$
- Pathwidth is easy for graphs that are "almost" a clique?
- That become a clique after deleting k vertices
- Builds on the NP-completeness proof for Treewidth and Pathwidth by Arnborg, Corneil \& Proskurowski '87
- They reduce Minimum Cut Linear Arrangement to computing Tree/path width on cobipartite graphs

Pathwidth and Treewidth do not admit polynomial kernels parameterized by vertex-deletion distance to a clique (unless NP \subseteq coNP/poly)

A kernelization lower bound

- Pathwidth of a clique K_{t} is $t-1$
- Pathwidth is easy for graphs that are "almost" a clique?
- That become a clique after deleting k vertices
- Builds on the NP-completeness proof for Treewidth and Pathwidth by Arnborg, Corneil \& Proskurowski '87
- They reduce Minimum Cut Linear Arrangement to computing Tree/path width on cobipartite graphs
- We build a cross-composition of MinCut on cubic graphs into tree/pathwidth on a cobipartite graph where one partite set is small

Pathwidth and Treewidth do not admit polynomial kernels parameterized by vertex-deletion distance to a clique (unless NP \subseteq coNP/poly)

A kernelization lower bound

- Pathwidth of a clique K_{t} is $t-1$
- Pathwidth is easy for graphs that are "almost" a clique?
- That become a clique after deleting k vertices
- Builds on the NP-completeness proof for Treewidth and Pathwidth by Arnborg, Corneil \& Proskurowski '87
- They reduce Minimum Cut Linear Arrangement to computing Tree/path width on cobipartite graphs
- We build a cross-composition of MinCut on cubic graphs into tree/pathwidth on a cobipartite graph where one partite set is small
- Deleting the small set yields a clique

Pathwidth and Treewidth do not admit polynomial kernels parameterized by vertex-deletion distance to a clique (unless NP \subseteq coNP/poly)

Details of the construction ...

Cutwidth c rosscomposes into $T \omega$ by clique deletion. known: cut width is NP -complete on planare max. dey 53 graphs.
Poly qu: all input graphs have same de pee sequence (characterized by n^{4})
and ark tore same k. Sort ratios by degree. Assume $n \geq 3$.

$$
\begin{aligned}
& n^{2}>c(n+1)^{k} \\
& c(n+1)^{k} \leqslant c(2 n)^{k}
\end{aligned}
$$

Input instance on dy ≤ 3 mph has cutwiath $\leq E \in \leq \frac{3 n}{2}$.

$$
n^{3}(n+1)+k-1
$$

So we ark n the big instance fac:
$(t-1) n^{4}+n^{3}(n+1)+k-1+2 n \log t$ $=t n^{4}+n^{3}+k-1+2 n \log t$.
Aten solving lindatane we can oliminate the est, provided that

$$
k^{\prime} \geqslant(t-1) n^{4}-1+2 n(2 \log t)+2\left(2_{2}^{n}\right)+n\left(n^{3}-1\right)
$$

$$
=t^{4}-1+4 n \operatorname{tog} t+2\left(\frac{n}{2}\right)-n .
$$

$$
\begin{aligned}
& \text { We neal: } \\
& \frac{t^{4}+n^{3}+k-1+2 n \log t \geqslant 2 n^{4}-1+4 n \log t+2\binom{n}{2}-1}{n^{3}+k-1 \geqslant 2 n \log t+2\left(\frac{n}{2}\right)-n-1} \\
& n^{3}+k \geqslant 2 n \log t+2\binom{n}{2}-n
\end{aligned}
$$

Should work if $n \geqslant \log _{\text {t }} t$:
Hen $2 n \log t+2\left(\frac{n}{2}\right)-n \leqslant 2 n^{2}+2\binom{n}{2}-n \leqslant 2 n^{2}+\frac{2 n(n-1)}{2}-n$

$$
\begin{aligned}
& 2 n \log t+2\binom{4}{2}-n \leq 2 n^{2}+2(2)-n \leq 2 n+\frac{2}{2} \\
& 22 n^{2}+n^{2}=3 n^{2} . S_{0}: n^{3} \geqslant 3 n^{2} \Leftrightarrow n \geqslant 3 .
\end{aligned}
$$

Conclusion

Conclusion

- Reduction rules for pathwidth are more complicated than for treewidth, because the structure is more restricted

Conclusion

- Reduction rules for pathwidth are more complicated than for treewidth, because the structure is more restricted
- Analysis proves effect of the rules with respect to several parameters

Conclusion

- Reduction rules for pathwidth are more complicated than for treewidth, because the structure is more restricted
- Analysis proves effect of the rules with respect to several parameters
- Pathwidth and treewidth do not admit polynomial kernels by deletion distance to a clique

Future directions

Experimental evaluation of the reduction rules

Lower bounds on kernel sizes

- Kernel with $\mathrm{O}\left(\mathrm{k}^{3-\varepsilon}\right)$ bits for parameterization by vertex cover?

Pathwidth parameterized by feedback vertex set

- Polynomial kernel for treewidth by FVS
- Trees have constant treewidth but potentially large pathwidth

Future directions

Experimental evaluation of the reduction rules

Lower boun-
-K THANK MOU!
Pathwiatm,

- Polynomial kernel for treewidth by FVS
- Trees have constant treewidth but potentially large pathwidth

