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Introduction - definitions

Deterministic parameterized connected vertex cover.

A parameterized problem instance comes with an additional
integer (G , k).

A problem is FPT if it admits an algorithm with f (k)poly(n)
running time.

Goal: for problems known to be FPT design the fastest
algorithm possible.

We are interested in the best possible function f and as
O∗(f (k)) denote O(f (k)poly(n)).
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Introduction - history

CVC problem def.

Given an undirected graph G = (V ,E ) and an integer k , decide
whether there exists a connected vertex cover of G of cardinality at
most k?

O∗(6k) GNW’05
O∗(3.2361k) MRR’06
O∗(2.9316k) FM’06
O∗(2.7606k) MRR’08
O∗(2.4882k) B’10

O∗(2k)(randomized) CNPPRW’11
O∗(2k) this paper
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Algorithm
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Algorithm

CVC is contraction closed, i.e., if (G , k) is a YES-instance than
(G ′, k) is a YES-instance.

G

u v

G ′

u v xuv
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Algorithm

We use the iterative compression technique.

Consider any edge uv of G .

Solve the problem for G ′ with u and v identified into x .
If (G ′, k) is NO-instance, return NO.
If X ′ is cvc of G ′, then Z := (X ′ \ {x}) ∪ {u, v} is cvc of G .
Use Z to exploit the structure of G .

V \ Z (independent)

Z (connected)
G
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Algorithm

By a factor n (can be reduced to 2k), it is enough to solve:

Compression CVC

Given G = (V ,E ), k and a cvc Z ⊆ V of size at most k + 2 find cvc
of G of size at most k .

V \ Z (independent)

Z (connected)
G

Marek Cygan Deterministic parameterized CVC 11/21



Algorithm

Guess (by trying 2|Z | possibilities) subset of Z used by solution.

Z = Znot ∪ Ztake , where Znot is independent.
Define Vtake as vertices of V \ Z with  1 neighbour in Znot .
Vtake ∪ Ztake form a vc of G .
If a vertex of Vtake has no neighbor in Ztake , then terminate the
branch.

Vtake = N(Znot) \ Ztake

Znot Ztake
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Algorithm

Since X0 := Vtake ∪ Ztake is already a vc of G it remains to find
the smallest cardinality set X1 ⊆ Vmaybe := V \ (Z ∪ Vtake), such
that G [X0 ∪ X1] is connected.

This is a Steiner tree problem, where as terminals we take
contracted connected components of G [X0].

Therefore we can find X1 in O∗(2cc(G [X0])) time by using
algorithm of Nederlof for Steiner tree (or dynamic programming
over subsets).
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Algorithm - example

Z

Ztake

Vtake
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Complexity analysis
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Complexity analysis

For each subset Ztake ⊆ Z such that Z \ Ztake is independent we
have O∗(2z) running time, where z = cc(G [Ztake ]).

The running time can be upper bounded by the cardinality of

P := {(Ztake , C) : Ztake is vc of G[Z], C ⊆ CC(G [Ztake ])}

It is easy to show 3|Z | upper bound, since each vertex of Z can
be (i) not taken to Ztake , (ii) taken and its cc belongs to C, (iii)
taken and its cc does not belong to C.

Observe that knowing the type of each vertex of Z gives us at
most one corresponding pair of P .
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Complexity analysis

We want to show 3 · 2|Z |−1 upper bound on |P |.

Consider any spanning tree T of G [Z ] and root it in an arbitrary
vertex.
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Complexity analysis

For the root we have three choices, as previously: (i) not taken
to Ztake , (ii) taken and its cc belongs to C, (iii) taken and its cc
does not belong to C.

Consider any non-root node v of T and let p be its parent.

If p is (i), then v cannot be (i), because Ztake is vc in G [Z ].

If p is (ii), then v cannot be (iii), as they cannot be in two
different components of C.

Similarly if p is (iii), then v cannot be (ii).

This gives 3 · 2|Z |−1 upper bound on |P | and since |Z | ¬ k + 2
we have O∗(2k) algorithm for CVC.
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Conclusions
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Conclusions and open problems

1 We have shown how to solve CVC deterministically in O∗(2k)
time.

2 Our algorithm can be extended to weighted and counting
variants.

3 By recent work [CDLMNOPSW’12], one can not solve the
counting variant in 0∗((2− ε)k) unless SETH fails.

4 Open problem: is it possible to show that there is no 0∗((2− ε)k)
algorithm for the decision version unless SETH fails?

Marek Cygan Deterministic parameterized CVC 20/21



Questions?

Thank you!
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