Deterministic parameterized connected vertex cover

Marek Cygan

IDSIA, University of Lugano, Switzerland

July 4, Helsinki, SWAT 2012

Outline

- Introduction.
- Our algorithm.
- Time complexity analysis.
- Onclusions.

Introduction

Introduction - definitions

Deterministic parameterized connected vertex cover.

Introduction - definitions

Deterministic parameterized connected vertex cover.

Introduction - definitions

Deterministic parameterized connected vertex cover.

- A parameterized problem instance comes with an additional integer (*G*, *k*).
- A problem is FPT if it admits an algorithm with f(k) poly(n) running time.
- Goal: for problems known to be FPT design the fastest algorithm possible.
- We are interested in the best possible function f and as O^{*}(f(k)) denote O(f(k)poly(n)).

Introduction - history

CVC problem def.

Given an undirected graph G = (V, E) and an integer k, decide whether there exists a connected vertex cover of G of cardinality at most k?

$O^*(6^k)$	GNW'05
$O^*(3.2361^k)$	MRR'06
$O^*(2.9316^k)$	FM'06
$O^*(2.7606^k)$	MRR'08
$O^*(2.4882^k)$	B'10
$O^*(2^k)$ (randomized)	CNPPRW'11
$O^{*}(2^{k})$	this paper

CVC is contraction closed, i.e., if (G, k) is a YES-instance than (G', k) is a YES-instance.

We use the *iterative compression* technique.

• Consider any edge *uv* of *G*.

- Consider any edge uv of G.
- Solve the problem for G' with u and v identified into x.

- Consider any edge uv of G.
- Solve the problem for G' with u and v identified into x.
- If (G', k) is NO-instance, return NO.

- Consider any edge uv of G.
- Solve the problem for G' with u and v identified into x.
- If (G', k) is NO-instance, return NO.
- If X' is cvc of G', then $Z := (X' \setminus \{x\}) \cup \{u, v\}$ is cvc of G.

- Consider any edge uv of G.
- Solve the problem for G' with u and v identified into x.
- If (G', k) is NO-instance, return NO.
- If X' is cvc of G', then $Z := (X' \setminus \{x\}) \cup \{u, v\}$ is cvc of G.
- Use Z to exploit the structure of G.

By a factor n (can be reduced to 2k), it is enough to solve:

Compression CVC

Given G = (V, E), k and a cvc $Z \subseteq V$ of size at most k + 2 find cvc of G of size at most k.

• Guess (by trying $2^{|Z|}$ possibilities) subset of Z used by solution.

Guess (by trying 2^{|Z|} possibilities) subset of Z used by solution.
Z = Z_{not} ∪ Z_{take}, where Z_{not} is independent.

- Guess (by trying $2^{|Z|}$ possibilities) subset of Z used by solution.
- $Z = Z_{not} \cup Z_{take}$, where Z_{not} is independent.
- Define V_{take} as vertices of $V \setminus Z$ with ≥ 1 neighbour in Z_{not} .

- Guess (by trying $2^{|Z|}$ possibilities) subset of Z used by solution.
- $Z = Z_{not} \cup Z_{take}$, where Z_{not} is independent.
- Define V_{take} as vertices of $V \setminus Z$ with ≥ 1 neighbour in Z_{not} .
- $V_{take} \cup Z_{take}$ form a vc of G.

- Guess (by trying $2^{|Z|}$ possibilities) subset of Z used by solution.
- $Z = Z_{not} \cup Z_{take}$, where Z_{not} is independent.
- Define V_{take} as vertices of $V \setminus Z$ with ≥ 1 neighbour in Z_{not} .
- $V_{take} \cup Z_{take}$ form a vc of G.
- If a vertex of V_{take} has no neighbor in Z_{take} , then terminate the branch.

 Since X₀ := V_{take} ∪ Z_{take} is already a vc of G it remains to find the smallest cardinality set X₁ ⊆ V_{maybe} := V \ (Z ∪ V_{take}), such that G[X₀ ∪ X₁] is connected.

- Since $X_0 := V_{take} \cup Z_{take}$ is already a vc of G it remains to find the smallest cardinality set $X_1 \subseteq V_{maybe} := V \setminus (Z \cup V_{take})$, such that $G[X_0 \cup X_1]$ is connected.
- This is a Steiner tree problem, where as terminals we take contracted connected components of $G[X_0]$.

- Since $X_0 := V_{take} \cup Z_{take}$ is already a vc of G it remains to find the smallest cardinality set $X_1 \subseteq V_{maybe} := V \setminus (Z \cup V_{take})$, such that $G[X_0 \cup X_1]$ is connected.
- This is a Steiner tree problem, where as terminals we take contracted connected components of $G[X_0]$.
- Therefore we can find X₁ in O^{*}(2^{cc(G[X₀])}) time by using algorithm of Nederlof for Steiner tree (or dynamic programming over subsets).

Algorithm - example

For each subset Z_{take} ⊆ Z such that Z \ Z_{take} is independent we have O^{*}(2^z) running time, where z = cc(G[Z_{take}]).

- For each subset Z_{take} ⊆ Z such that Z \ Z_{take} is independent we have O^{*}(2^z) running time, where z = cc(G[Z_{take}]).
- The running time can be upper bounded by the cardinality of

 $P := \{ (Z_{take}, \mathcal{C}) : Z_{take} \text{ is vc of } G[Z], \mathcal{C} \subseteq CC(G[Z_{take}]) \}$

- For each subset Z_{take} ⊆ Z such that Z \ Z_{take} is independent we have O^{*}(2^z) running time, where z = cc(G[Z_{take}]).
- The running time can be upper bounded by the cardinality of

$$\mathsf{P} := \{(\mathsf{Z}_{\textit{take}}, \mathcal{C}) : \mathsf{Z}_{\textit{take}} \text{ is vc of } \mathsf{G}[\mathsf{Z}], \ \mathcal{C} \subseteq \mathrm{CC}(\mathsf{G}[\mathsf{Z}_{\textit{take}}])\}$$

It is easy to show 3^{|Z|} upper bound, since each vertex of Z can be (i) not taken to Z_{take}, (ii) taken and its cc belongs to C, (iii) taken and its cc does not belong to C.

- For each subset Z_{take} ⊆ Z such that Z \ Z_{take} is independent we have O^{*}(2^z) running time, where z = cc(G[Z_{take}]).
- The running time can be upper bounded by the cardinality of

$$\mathsf{P} := \{(\mathsf{Z}_{\mathit{take}}, \mathcal{C}) : \mathsf{Z}_{\mathit{take}} ext{ is vc of G[Z], } \mathcal{C} \subseteq \operatorname{CC}(\mathsf{G}[\mathsf{Z}_{\mathit{take}}])\}$$

- It is easy to show 3^{|Z|} upper bound, since each vertex of Z can be (i) not taken to Z_{take}, (ii) taken and its cc belongs to C, (iii) taken and its cc does not belong to C.
- Observe that knowing the type of each vertex of Z gives us at most one corresponding pair of P.

• We want to show $3 \cdot 2^{|Z|-1}$ upper bound on |P|.

- We want to show $3 \cdot 2^{|Z|-1}$ upper bound on |P|.
- Consider any spanning tree T of G[Z] and root it in an arbitrary vertex.

 For the root we have three choices, as previously: (i) not taken to Z_{take}, (ii) taken and its cc belongs to C, (iii) taken and its cc does not belong to C.

- For the root we have three choices, as previously: (i) not taken to Z_{take}, (ii) taken and its cc belongs to C, (iii) taken and its cc does not belong to C.
- Consider any non-root node v of T and let p be its parent.

- For the root we have three choices, as previously: (i) not taken to Z_{take}, (ii) taken and its cc belongs to C, (iii) taken and its cc does not belong to C.
- Consider any non-root node v of T and let p be its parent.
- If p is (i), then v cannot be (i), because Z_{take} is vc in G[Z].

- For the root we have three choices, as previously: (i) not taken to Z_{take}, (ii) taken and its cc belongs to C, (iii) taken and its cc does not belong to C.
- Consider any non-root node v of T and let p be its parent.
- If p is (i), then v cannot be (i), because Z_{take} is vc in G[Z].
- If p is (ii), then v cannot be (iii), as they cannot be in two different components of C.

- For the root we have three choices, as previously: (i) not taken to Z_{take}, (ii) taken and its cc belongs to C, (iii) taken and its cc does not belong to C.
- Consider any non-root node v of T and let p be its parent.
- If p is (i), then v cannot be (i), because Z_{take} is vc in G[Z].
- If p is (ii), then v cannot be (iii), as they cannot be in two different components of C.
- Similarly if p is (iii), then v cannot be (ii).

- For the root we have three choices, as previously: (i) not taken to Z_{take}, (ii) taken and its cc belongs to C, (iii) taken and its cc does not belong to C.
- Consider any non-root node v of T and let p be its parent.
- If p is (i), then v cannot be (i), because Z_{take} is vc in G[Z].
- If p is (ii), then v cannot be (iii), as they cannot be in two different components of C.
- Similarly if p is (iii), then v cannot be (ii).
- This gives 3 · 2^{|Z|-1} upper bound on |P| and since |Z| ≤ k + 2 we have O^{*}(2^k) algorithm for CVC.

Conclusions

Conclusions and open problems

- We have shown how to solve CVC deterministically in O*(2^k) time.
- Our algorithm can be extended to weighted and counting variants.
- Solution By recent work [CDLMNOPSW'12], one can not solve the counting variant in $0^*((2 \varepsilon)^k)$ unless SETH fails.
- Open problem: is it possible to show that there is no 0^{*}((2 ε)^k) algorithm for the decision version unless SETH fails?

Questions?

Thank you!