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Problem Statement

Unsplittable Capacitated Facility Location (UCFL) Problem

Input: F = set of facilities and C = set of clients,
a metric cost function c between F and C ,
demand of client j = dj , opening cost of facility i = fi .

Goal: open a subset of facilities and assign clients to them.

Objective: minimize cost = opening costs + assignment
costs (assignment cost of client j to facility i = djcij).

Extra Input: capacity of facility i = ui

Constraints: unsplittable demand, do not violate capacities.
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An Example of UCFL

c11 = 1

u2 = 4 u4 = 5u3 = 6u1 = 5

d2 = 2 d3 = 3 d4 = 3d1 = 2

c21 = 3

c13 = 2

c22 = 3

c42 = 1

c33 = 1 c44 = 2

c34 = 1

F

C

All the other cost values are equal to the shortest path value in the
above graph, e.g., c31 = 4.

f1 = 7 f2 = 1 f3 = 2 f4 = 4

Solution 1: Open the second and third facilities. Service cost is
18, facility cost is 3 and total cost is 21.
Solution 2: Open the first and fourth facilities. Service cost is 16,
facility cost is 11 and total cost is 27.
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Motivations

Original Motivation

Location Problems in the operation research

New motivation

Contents Distribution Networks
(CDNs):

Alzoubi et al. (WWW ’08): A
load-aware IP Anycast CDN
architecture

The assignment of
downloadable objects, such as
media files, to some servers
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Preliminaries

Solving the UCFL problem without violation of capacities is
NP-hard.

(α, β)-approximation algorithm for the UCFL problem: cost
within factor α of the optimum, violates the capacity
constraints within factor β.
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Related Works to Variations of UCFL

Uncapacitated Facility Location Problem

current best approximation ratio = 1.488 (Li, ICALP’11)
current best hardness ratio = 1.463 (Guha-Khuller, SODA’98
+ Sviridenko’s observation)

Splittable Capacitated Facility Location Problem

current best approximation ratio = 5.83 (or 5?) in the
non-uniform case (Zhang-Chen-Ye, Mathematics of OR’05)
and 3 in the uniform case (Aggarwal et al., IPCO’10)
current best hardness ratio = 1.463
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UCFL Previous Results

Hardness Results:

(1.463, β)-hard for any β ≥ 1

Violation of the capacities is inevitable, unless P = NP.

Algorithmic Results:
The first approximation algorithm: (9, 4)-approximation for the
uniform case (Shmoys-Tardos-Aardal, STOC’97.)
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New Results

Recall: The best possible is (O(1), 1 + ε)-approximation
unless P = NP.

We only consider the uniform case.

All capacities are uniform → we can assume that u = 1 and
dj ≤ 1 for all j ∈ C .

Definition

An ε-restricted UCFL, denoted by RUCFL(ε), instance is an
instance of the UCFL in which ε < dj ≤ 1 for all j ∈ C .
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New results, Cont’d

Theorem

(Weaker Version) If A is an (α, β)-approximation algorithm for the
RUCFL(ε) then there is an algorithm AC for UCFL with factor

(10α + 11,max{β, 1 + ε}).

Corollary

For any constant ε > 0, an (O(1), 1 + ε)-approximation algorithm
for the RUCFL(ε) yields an (O(1), 1 + ε)-approximation for the
UCFL.
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New Results, Cont’d

Theorem

There is a polynomial time (10.173, 3/2)-approximation algorithm
for the UCFLP.

Theorem

There is a polynomial time (30.432, 4/3)-approximation algorithm
for the UCFLP.

Theorem

There exists a (1 + ε, 1 + ε)-approximation algorithm for the
Euclidean UCFL in R2 with running time in quasi-polynomial for
any constant ε > 0.
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Some More Definitions

Large clients = clients with demand more than ε,
L = {j ∈ C : dj > ε}.

Small clients = clients with demand at most ε, S = C\L.

φ1 : C1 → F1 and φ2 : C2 → F2 are consistent if φ1(j) = φ2(j)
for all j ∈ C1 ∩ C2.

OPT = optimum value
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1- Assign large clients:

1 Run A to assign large clients.

2 For opened facilities, set fi = 0 and set u′i to unused capacity
of facility i .
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Proof of Reduction to RUCFL

2- Assign small clients:

1 Assign small clients fractionally by an approximation
algorithm for the splittable CFLP.

2 Assign small clients integrally: round the splittable
assignment by Shmoys-Tardos algorithm for the Generalized
Assignment Problem.
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Proof of Reduction to RUCFL, Cont’d

Basic idea: Ignoring small clients in step 1 is not a big mistake!

Lemma

(Weaker Version) There exist a fractional assignment of small
clients with service cost at most (α + 1)OPT and facility cost at
most OPT .

splitable CFLP algorithm → finds a fractional assignment having
cost within constant factor of this fractional assignment.
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Proof of Reduction to RUCFL, Cont’d

d2 = 3 d4 = 8d1 = 5

F

C

s1 = 9 s2 = 5 s3 = 3 s4 = 2

Our Assignment

Optimal Assignment

si = total demand of small clients assigned to ith facility

General Idea: Change an optimal solution to a solution
consistent with our assignment.

Switch the assignment of large clients one by one.

Order?

service cost ≤ service cost of small clients in optimum plus
service cost of large clients in optimum (OPT ) plus service
cost of large clients αOPT .

Do all switches simultaneously.
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Proof of Reduction to RUCFL, Cont’d

We showed there is a fractional assignment of small clients
with low cost.

We found one with a low cost by an approximation algorithm.
Now?

Using rounding for Generalized Assignment problem:

Connection cost remains the same.
It violates the capacities at most to the extent of the largest
demand.
The largest demand is at most ε → violation is within factor
1 + ε.
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RUCFL(1
2)

Theorem

There is an exact algorithm for RUCFL(12).

proof

Each facility serves exactly one client in the optimal solution.

The optimal assignment is a matching.

The algorithm is a min-cost maximum matching algorithm.

Corollary

There is a (10.173, 3/2)-approximation algorithm for the UCFL
problem.
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Conclusion and Future Works

To solve the UCFL problem, we transformed the problem to a
simpler version.

We solved the simpler version for ε = 1/2 and ε = 1/3 to
obtain factor (10.173, 3/2) and (30.432, 4/3) approximation
algorithms.

Open question? Finding a (O(1), 1 + ε)-approximation
algorithm for the UCFL problem.
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Thanks for your attention!
Questions?
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