Introduction	Related Works and New Results	Our Results	Conclusion

Approximation Algorithms for the Unsplittable Capacitated Facility Location Problem

Babak Behsaz Mohammad R. Salavatipour Zoya Svitkina

Department of Computing Science University of Alberta

July 5, 2012

Problem	Statement		
Introduction	Related Works and New Results	Our Results	Conclusion
•••••		000000	00

Input: F = set of facilities and C = set of clients,
 a metric cost function c between F and C,
 demand of client j = d_i, opening cost of facility i = f_i.

Problem Sta	atement		
Introduction	Related Works and New Results	Our Results	Conclusion
•••••		000000	00

 Input: F = set of facilities and C = set of clients, a metric cost function c between F and C, demand of client j = d_j, opening cost of facility i = f_i.

Goal: open a subset of facilities and assign clients to them.

Problem S	tatement		
0000	00000	000000	00
Introduction	Related Works and New Results	Our Results	Conclusion

 Input: F = set of facilities and C = set of clients, a metric cost function c between F and C, demand of client j = d_j, opening cost of facility i = f_i.

- **Goal:** open a subset of facilities and assign clients to them.
- Objective: minimize cost = opening costs + assignment costs (assignment cost of client *j* to facility *i* = *d_ic_{ij}*).

Problem S	tatement		
0000	00000	000000	00
Introduction	Related Works and New Results	Our Results	Conclusion

- Input: F = set of facilities and C = set of clients,
 a metric cost function c between F and C,
 demand of client j = d_j, opening cost of facility i = f_i.
- Goal: open a subset of facilities and assign clients to them.
- Objective: minimize cost = opening costs + assignment costs (assignment cost of client *j* to facility *i* = *d_jc_{ij}*).
- **Extra Input:** capacity of facility $i = u_i$

Problem S	tatement		
000	00000	000000	00
Introduction	Related Works and New Results	Our Results	Conclusion

- Input: F = set of facilities and C = set of clients, a metric cost function c between F and C, demand of client j = d_i, opening cost of facility i = f_i.
- Goal: open a subset of facilities and assign clients to them.
- Objective: minimize cost = opening costs + assignment costs (assignment cost of client *j* to facility *i* = *d_jc_{ij}*).
- **Extra Input:** capacity of facility $i = u_i$
- **Constraints:** unsplittable demand, do not violate capacities.

All the other cost values are equal to the shortest path value in the above graph, e.g., $c_{31} = 4$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

All the other cost values are equal to the shortest path value in the above graph, e.g., $c_{31} = 4$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Solution 1: Open the second and third facilities. Service cost is 18, facility cost is 3 and total cost is 21.

All the other cost values are equal to the shortest path value in the above graph, e.g., $c_{31} = 4$.

Solution 1: Open the second and third facilities. Service cost is 18, facility cost is 3 and total cost is 21.
Solution 2: Open the first and fourth facilities. Service cost is 16, facility cost is 11 and total cost is 27.

Introduction	Related Works and New Results	Our Results	Conclusion
0000		000000	00
Motivations			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Original Motivation

Location Problems in the operation research

Introduction	Related Works and New Results	Our Results	Conclusion
0000	00000	000000	
Motivations			

Original Motivation

Location Problems in the operation research

New motivation

Contents Distribution Networks (CDNs):

- Alzoubi et al. (WWW '08): A load-aware IP Anycast CDN architecture
- The assignment of downloadable objects, such as media files, to some servers

Introduction	Related Works and New Results	Our Results	Conclusion
○○○●		000000	00
Preliminaries			

 Solving the UCFL problem without violation of capacities is NP-hard.

Introduction	Related Works and New Results	Our Results	Conclusion
0000	00000	000000	00
Droliminarios			

- Solving the UCFL problem without violation of capacities is NP-hard.
- (α, β)-approximation algorithm for the UCFL problem: cost within factor α of the optimum, violates the capacity constraints within factor β.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Introduction 0000 Related Works and New Results

Our Results 000000

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Related Works to Variations of UCFL

Uncapacitated Facility Location Problem

- current best approximation ratio = 1.488 (Li, ICALP'11)
- current best hardness ratio = 1.463 (Guha-Khuller, SODA'98
 - + Sviridenko's observation)

Introduction 0000 Related Works and New Results

Our Results 000000

Related Works to Variations of UCFL

- Uncapacitated Facility Location Problem
 - current best approximation ratio = 1.488 (Li, ICALP'11)
 - current best hardness ratio = 1.463 (Guha-Khuller, SODA'98 + Sviridenko's observation)
- Splittable Capacitated Facility Location Problem
 - current best approximation ratio = 5.83 (or 5?) in the non-uniform case (Zhang-Chen-Ye, Mathematics of OR'05) and 3 in the uniform case (Aggarwal *et al.*, IPCO'10)
 - current best hardness ratio = 1.463

Introduction 0000	Related Works and New Results ○●○○○	Our Results 000000	Conclusion 00
UCFL Prev	vious Results		

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Hardness Results:

• (1.463, β)-hard for any $\beta \geq 1$

Introduction	Related Works and New Results	Our Results	Conclusion
0000	○●○○○	000000	00
UCFL Previous	s Results		

- (1.463, β)-hard for any $\beta \geq 1$
- Violation of the capacities is inevitable, unless P = NP.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Related Works and New Results	Our Results	Conclusion
0000	○●○○○	000000	00
UCFL Prev	vious Results		

- (1.463, β)-hard for any $\beta \geq 1$
- Violation of the capacities is inevitable, unless P = NP.

Algorithmic Results:

The first approximation algorithm: (9,4)-approximation for the uniform case (Shmoys-Tardos-Aardal, STOC'97.)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	Related Works and New Results	Our Results	Conclusion
0000	○●○○○	000000	00
UCFL F	Previous Results		

- $(1.463, \beta)$ -hard for any $\beta \ge 1$
- Violation of the capacities is inevitable, unless P = NP.

Algorithmic Results:

The first approximation algorithm: (9,4)-approximation for the uniform case (Shmoys-Tardos-Aardal, STOC'97.) Current best approximation algorithms:

• (11, 2) for non-uniform case and (5, 2) for uniform case

Introduction	Related Works and New Results	Our Results	Conclusion
0000	○●○○○	000000	00
UCFL F	Previous Results		

- (1.463, β)-hard for any $\beta \geq 1$
- Violation of the capacities is inevitable, unless P = NP.

Algorithmic Results:

The first approximation algorithm: (9,4)-approximation for the uniform case (Shmoys-Tardos-Aardal, STOC'97.) Current best approximation algorithms:

- (11,2) for non-uniform case and (5,2) for uniform case
- uniform case: (O(log n), 1 + ϵ) for any ϵ > 0 in polynomial time (Bateni-Hajiaghayi, SODA'09.)

■ non-uniform case: (O(log n), 1 + ϵ) for any ϵ > 0 in quasi-polynomial time (Bateni-Hajiaghayi, SODA'09.)

Introduction	Related Works and New Results	Our Results	Conclusion
0000	○○●○○	000000	00
New Results			

■ Recall: The best possible is (O(1), 1 + ϵ)-approximation unless P = NP.

Introduction	Related Works and New Results	Our Results	Conclusion
0000	○○●○○	000000	00
New Results			

Recall: The best possible is (O(1), 1 + ε)-approximation unless P = NP.

• We only consider the **uniform** case.

Introduction	Related Works and New Results	Our Results	Conclusion
0000		000000	00
New Results			

- Recall: The best possible is (O(1), 1 + ε)-approximation unless P = NP.
- We only consider the **uniform** case.
- All capacities are uniform \rightarrow we can assume that u = 1 and $d_j \leq 1$ for all $j \in C$.

Introduction	Related Works and New Results	Our Results	Conclusion
0000	○○●○○	000000	00
New Results			

- Recall: The best possible is (O(1), 1 + ε)-approximation unless P = NP.
- We only consider the **uniform** case.
- All capacities are uniform \rightarrow we can assume that u = 1 and $d_j \leq 1$ for all $j \in C$.

Definition

An ϵ -restricted UCFL, denoted by RUCFL(ϵ), instance is an instance of the UCFL in which $\epsilon < d_j \le 1$ for all $j \in C$.

Introduction	Related Works and New Results	Our Results	Conclusion
	00000		
N 1			

New results, Cont'd

Theorem

(Weaker Version) If A is an (α, β) -approximation algorithm for the $RUCFL(\epsilon)$ then there is an algorithm A_C for UCFL with factor

 $(10\alpha + 11, \max\{\beta, 1 + \epsilon\}).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Related Works and New Results	Our Results	Cor
	00000		

clusion

New results, Cont'd

Theorem

(Weaker Version) If A is an (α, β) -approximation algorithm for the RUCFL (ϵ) then there is an algorithm A_C for UCFL with factor

 $(10\alpha + 11, \max\{\beta, 1 + \epsilon\}).$

Corollary

For any constant $\epsilon > 0$, an $(O(1), 1 + \epsilon)$ -approximation algorithm for the RUCFL(ϵ) yields an $(O(1), 1 + \epsilon)$ -approximation for the UCFL.

Introduction	Related Works and New Results	Our Results	Conclusion
	00000		
N. D. L.	Carle		

There is a polynomial time (10.173, 3/2)-approximation algorithm for the UCFLP.

Theorem

There is a polynomial time (30.432, 4/3)-approximation algorithm for the UCFLP.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Related Works and New Results	Our Results	Conclusion
0000	00000	000000	00
New Results	Cont'd		

There is a polynomial time (10.173, 3/2)-approximation algorithm for the UCFLP.

Theorem

There is a polynomial time (30.432, 4/3)-approximation algorithm for the UCFLP.

Theorem

There exists a $(1 + \epsilon, 1 + \epsilon)$ -approximation algorithm for the Euclidean UCFL in \mathbb{R}^2 with running time in quasi-polynomial for any constant $\epsilon > 0$.

Some More	e Definitions		
Introduction	Related Works and New Results	Our Results	Conclusion
0000		•00000	00

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Large clients = clients with demand more than *ϵ*, L = {*j* ∈ C : d_j > *ϵ*}.

Some More	Definitions		
Introduction 0000	Related Works and New Results	Our Results	Conclusion 00

Large clients = clients with demand more than *ϵ*,
 L = {*j* ∈ C : d_j > *ϵ*}.

Small clients = clients with demand at most ϵ , $S = C \setminus L$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Some More	Definitions		
Introduction 0000	Related Works and New Results	Our Results	Conclusion 00

Large clients = clients with demand more than *ϵ*,
 L = {j ∈ C : d_j > *ϵ*}.

Small clients = clients with demand at most ϵ , $S = C \setminus L$.

• $\phi_1 : C_1 \to F_1$ and $\phi_2 : C_2 \to F_2$ are consistent if $\phi_1(j) = \phi_2(j)$ for all $j \in C_1 \cap C_2$.

Large clients = clients with demand more than *ϵ*,
 L = {j ∈ C : d_j > *ϵ*}.

Small clients = clients with demand at most ϵ , $S = C \setminus L$.

• $\phi_1 : C_1 \to F_1$ and $\phi_2 : C_2 \to F_2$ are consistent if $\phi_1(j) = \phi_2(j)$ for all $j \in C_1 \cap C_2$.

OPT = optimum value

 Introduction
 Related Works and New Results
 Our Results
 Conclusion

 0000
 00000
 0
 0

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Recall: \mathcal{A} is an (α, β) -approximation RUCFL (ϵ) . 1- Assign large clients: Introduction Related Works and New Results Our Results Conclusion of Proof of Reduction to RUCFL

Recall: \mathcal{A} is an (α, β) -approximation RUCFL (ϵ) .

1- Assign large clients:

1 Run \mathcal{A} to assign large clients.

 Introduction
 Related Works and New Results
 Our Results
 Conclusion

 Ooooo
 00000
 00000
 00000

Recall: \mathcal{A} is an (α, β) -approximation RUCFL (ϵ) .

- 1- Assign large clients:
 - **1** Run \mathcal{A} to assign large clients.
 - 2 For opened facilities, set $f_i = 0$ and set u'_i to unused capacity of facility *i*.

 Introduction
 Related Works and New Results
 Our Results
 Our Results
 Conclusion

 Over of of Reduction to RUCFL
 Over Results
 Over Results
 Over Results
 Over Results

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

2- Assign small clients:

 Introduction
 Related Works and New Results
 Our Results
 Conclusion

 0000
 00000
 00000
 00

Proof of Reduction to RUCFL

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- 2- Assign small clients:
 - Assign small clients **fractionally** by an approximation algorithm for the splittable CFLP.

Introduction Related Works and New Results Our Results Co 0000 00000 00000 00000 00000

Proof of Reduction to RUCFL

- 2- Assign small clients:
 - Assign small clients **fractionally** by an approximation algorithm for the splittable CFLP.
 - Assign small clients integrally: round the splittable assignment by Shmoys-Tardos algorithm for the Generalized Assignment Problem.

IntroductionRelated Works and New ResultsOur ResultsConclusion0000000000000

Proof of Reduction to RUCFL, Cont'd

Basic idea: Ignoring small clients in step 1 is not a big mistake!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 0000 Related Works and New Results 00000

Our Results

Conclusion 00

Proof of Reduction to RUCFL, Cont'd

Basic idea: Ignoring small clients in step 1 is not a big mistake!

Lemma

(Weaker Version) There exist a fractional assignment of small clients with service cost at most $(\alpha + 1)OPT$ and facility cost at most OPT.

splitable CFLP algorithm \rightarrow finds a fractional assignment having cost within constant factor of this fractional assignment.

General Idea: Change an optimal solution to a solution consistent with our assignment.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- General Idea: Change an optimal solution to a solution consistent with our assignment.
- Switch the assignment of large clients one by one.
- service cost ≤ service cost of small clients in optimum plus service cost of large clients in optimum (OPT) plus service cost of large clients αOPT.

- General Idea: Change an optimal solution to a solution consistent with our assignment.
- Switch the assignment of large clients one by one.
- service cost ≤ service cost of small clients in optimum plus service cost of large clients in optimum (OPT) plus service cost of large clients αOPT.

- General Idea: Change an optimal solution to a solution consistent with our assignment.
- Switch the assignment of large clients one by one.
- service cost ≤ service cost of small clients in optimum plus service cost of large clients in optimum (OPT) plus service cost of large clients αOPT.

- General Idea: Change an optimal solution to a solution consistent with our assignment.
- Switch the assignment of large clients one by one. Order?
- service cost ≤ service cost of small clients in optimum plus service cost of large clients in optimum (OPT) plus service cost of large clients αOPT.

- General Idea: Change an optimal solution to a solution consistent with our assignment.
- Switch the assignment of large clients one by one. Order?
- service cost ≤ service cost of small clients in optimum plus service cost of large clients in optimum (OPT) plus service cost of large clients αOPT.

- General Idea: Change an optimal solution to a solution consistent with our assignment.
- Switch the assignment of large clients one by one. Order?
- service cost ≤ service cost of small clients in optimum plus service cost of large clients in optimum (OPT) plus service cost of large clients αOPT.
- Do all switches simultaneously.

Introduction	Related Works and New Results	Our Results	Conclusion
0000	00000	000000	00

Proof of Reduction to RUCFL, Cont'd

- We showed there is a fractional assignment of small clients with low cost.
- We found one with a low cost by an approximation algorithm. Now?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction	Related Works and New Results	Our Results	Conclusion
		000000	

Proof of Reduction to RUCFL, Cont'd

- We showed there is a fractional assignment of small clients with low cost.
- We found one with a low cost by an approximation algorithm. Now?
- Using rounding for Generalized Assignment problem:
 - Connection cost remains the same.
 - It violates the capacities at most to the extent of the largest demand.
 - The largest demand is at most $\epsilon \to {\rm violation}$ is within factor $1+\epsilon.$

Introduction 0000	Related Works and New Results 00000	Our Results 00000●	Conclusion
$RUCFL(\frac{1}{2})$			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

There is an exact algorithm for $RUCFL(\frac{1}{2})$.

Introduction	Related Works and New Results	Our Results	Conclusion
0000		○○○○○●	00
$RUCFL(\frac{1}{2})$			

There is an exact algorithm for $RUCFL(\frac{1}{2})$.

proof

Each facility serves exactly one client in the optimal solution.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Related Works and New Results	Our Results	Conclusion
0000	00000	○○○○○●	
$RUCFL(\frac{1}{2})$			

There is an exact algorithm for $RUCFL(\frac{1}{2})$.

proof

Each facility serves exactly one client in the optimal solution.

The optimal assignment is a matching.

Introduction 0000	Related Works and New Results	Our Results	Conclusion 00
$RUCFL(\frac{1}{2})$			

There is an exact algorithm for $RUCFL(\frac{1}{2})$.

proof

- Each facility serves exactly one client in the optimal solution.
- The optimal assignment is a matching.
- The algorithm is a min-cost maximum matching algorithm.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction 0000	Related Works and New Results	Our Results	Conclusion 00
$RUCFL(\frac{1}{2})$			

There is an exact algorithm for $RUCFL(\frac{1}{2})$.

proof

Each facility serves exactly one client in the optimal solution.

- The optimal assignment is a matching.
- The algorithm is a min-cost maximum matching algorithm.

Corollary

There is a (10.173, 3/2)-approximation algorithm for the UCFL problem.

Introduction	Related Works and New Results	Our Results	Conclusion
0000		000000	●O
Conclusion and	Future Works		

 To solve the UCFL problem, we transformed the problem to a simpler version.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	Related Works and New Results	Our Results	Conclusion
			•0

To solve the UCFL problem, we transformed the problem to a

• We solved the simpler version for $\epsilon = 1/2$ and $\epsilon = 1/3$ to obtain factor (10.173, 3/2) and (30.432, 4/3) approximation

Conclusion and Future Works

simpler version.

algorithms.

Introduction	Related Works and New Results	Our Results	Conclusion
			•0

Conclusion and Future Works

- To solve the UCFL problem, we transformed the problem to a simpler version.
- We solved the simpler version for $\epsilon = 1/2$ and $\epsilon = 1/3$ to obtain factor (10.173, 3/2) and (30.432, 4/3) approximation algorithms.

■ Open question? Finding a (*O*(1), 1 + *ϵ*)-approximation algorithm for the UCFL problem.

Introduction	Related Works and New Results	Our Results	Conclusion
			\odot

Thanks for your attention! Questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?