Approximation Algorithms for the Unsplittable Capacitated Facility Location Problem

Babak Behsaz
Mohammad R. Salavatipour
Zoya Svitkina

Department of Computing Science
University of Alberta

$$
\text { July 5, } 2012
$$

Problem Statement

Unsplittable Capacitated Facility Location (UCFL) Problem

- Input: $F=$ set of facilities and $C=$ set of clients, a metric cost function c between F and C, demand of client $j=d_{j}$, opening cost of facility $i=f_{i}$.

Problem Statement

Unsplittable Capacitated Facility Location (UCFL) Problem

- Input: $F=$ set of facilities and $C=$ set of clients, a metric cost function c between F and C, demand of client $j=d_{j}$, opening cost of facility $i=f_{i}$.
■ Goal: open a subset of facilities and assign clients to them.

Problem Statement

Unsplittable Capacitated Facility Location (UCFL) Problem

- Input: $F=$ set of facilities and $C=$ set of clients, a metric cost function c between F and C, demand of client $j=d_{j}$, opening cost of facility $i=f_{i}$.
■ Goal: open a subset of facilities and assign clients to them.
■ Objective: minimize cost $=$ opening costs + assignment costs (assignment cost of client j to facility $i=d_{j} c_{i j}$).

Problem Statement

Unsplittable Capacitated Facility Location (UCFL) Problem

- Input: $F=$ set of facilities and $C=$ set of clients, a metric cost function c between F and C, demand of client $j=d_{j}$, opening cost of facility $i=f_{i}$.
■ Goal: open a subset of facilities and assign clients to them.
■ Objective: minimize cost $=$ opening costs + assignment costs (assignment cost of client j to facility $i=d_{j} c_{i j}$).
- Extra Input: capacity of facility $i=u_{i}$

Problem Statement

Unsplittable Capacitated Facility Location (UCFL) Problem

- Input: $F=$ set of facilities and $C=$ set of clients, a metric cost function c between F and C, demand of client $j=d_{j}$, opening cost of facility $i=f_{i}$.
■ Goal: open a subset of facilities and assign clients to them.
■ Objective: minimize cost $=$ opening costs + assignment costs (assignment cost of client j to facility $i=d_{j} c_{i j}$).
- Extra Input: capacity of facility $i=u_{i}$

■ Constraints: unsplittable demand, do not violate capacities.

An Example of UCFL

All the other cost values are equal to the shortest path value in the above graph, e.g., $c_{31}=4$.

An Example of UCFL

All the other cost values are equal to the shortest path value in the above graph, e.g., $c_{31}=4$.

Solution 1: Open the second and third facilities. Service cost is 18 , facility cost is 3 and total cost is 21 .

An Example of UCFL

All the other cost values are equal to the shortest path value in the above graph, e.g., $c_{31}=4$.

Solution 1: Open the second and third facilities. Service cost is 18 , facility cost is 3 and total cost is 21 .
Solution 2: Open the first and fourth facilities. Service cost is 16, facility cost is 11 and total cost is 27 .

Motivations

Original Motivation

Location Problems in the operation research

Motivations

Original Motivation

Location Problems in the operation research

New motivation

Contents Distribution Networks (CDNs):

■ Alzoubi et al. (WWW '08): A load-aware IP Anycast CDN architecture

- The assignment of downloadable objects, such as media files, to some servers

Preliminaries

- Solving the UCFL problem without violation of capacities is $N P$-hard.

Preliminaries

- Solving the UCFL problem without violation of capacities is $N P$-hard.
■ (α, β)-approximation algorithm for the UCFL problem: cost within factor α of the optimum, violates the capacity constraints within factor β.

Related Works to Variations of UCFL

■ Uncapacitated Facility Location Problem

- current best approximation ratio $=1.488$ (Li, ICALP'11)
- current best hardness ratio $=1.463$ (Guha-Khuller, SODA'98 + Sviridenko's observation)

Related Works to Variations of UCFL

■ Uncapacitated Facility Location Problem

- current best approximation ratio $=1.488$ (Li, ICALP'11)
- current best hardness ratio $=1.463$ (Guha-Khuller, SODA'98 + Sviridenko's observation)
■ Splittable Capacitated Facility Location Problem
- current best approximation ratio $=5.83$ (or 5?) in the non-uniform case (Zhang-Chen-Ye, Mathematics of OR'05) and 3 in the uniform case (Aggarwal et al., IPCO'10)
- current best hardness ratio $=1.463$

UCFL Previous Results

Hardness Results:

■ (1.463, β)-hard for any $\beta \geq 1$

UCFL Previous Results

Hardness Results:

- (1.463, β)-hard for any $\beta \geq 1$

■ Violation of the capacities is inevitable, unless $P=N P$.

UCFL Previous Results

Hardness Results:

- (1.463, β)-hard for any $\beta \geq 1$

■ Violation of the capacities is inevitable, unless $P=N P$.
Algorithmic Results:
The first approximation algorithm: $(9,4)$-approximation for the uniform case (Shmoys-Tardos-Aardal, STOC'97.)

UCFL Previous Results

Hardness Results:

- (1.463, β)-hard for any $\beta \geq 1$

■ Violation of the capacities is inevitable, unless $P=N P$.
Algorithmic Results:
The first approximation algorithm: $(9,4)$-approximation for the uniform case (Shmoys-Tardos-Aardal, STOC'97.)
Current best approximation algorithms:
■ $(11,2)$ for non-uniform case and $(5,2)$ for uniform case

Hardness Results:

- (1.463, β)-hard for any $\beta \geq 1$

■ Violation of the capacities is inevitable, unless $P=N P$.

Algorithmic Results:

The first approximation algorithm: $(9,4)$-approximation for the uniform case (Shmoys-Tardos-Aardal, STOC'97.)
Current best approximation algorithms:
■ $(11,2)$ for non-uniform case and $(5,2)$ for uniform case
■ uniform case: $(O(\log n), 1+\epsilon)$ for any $\epsilon>0$ in polynomial time (Bateni-Hajiaghayi, SODA'09.)

- non-uniform case: $(O(\log n), 1+\epsilon)$ for any $\epsilon>0$ in quasi-polynomial time (Bateni-Hajiaghayi, SODA'09.)

New Results

■ Recall: The best possible is $(O(1), 1+\epsilon)$-approximation unless $P=N P$.

New Results

■ Recall: The best possible is $(O(1), 1+\epsilon)$-approximation unless $P=N P$.

■ We only consider the uniform case.

New Results

■ Recall: The best possible is $(O(1), 1+\epsilon)$-approximation unless $P=N P$.

■ We only consider the uniform case.

- All capacities are uniform \rightarrow we can assume that $u=1$ and $d_{j} \leq 1$ for all $j \in C$.

New Results

■ Recall: The best possible is $(O(1), 1+\epsilon)$-approximation unless $P=N P$.

■ We only consider the uniform case.
■ All capacities are uniform \rightarrow we can assume that $u=1$ and $d_{j} \leq 1$ for all $j \in C$.

Definition

An ϵ-restricted UCFL, denoted by $\operatorname{RUCFL}(\epsilon)$, instance is an instance of the UCFL in which $\epsilon<d_{j} \leq 1$ for all $j \in C$.

New results, Cont'd

Theorem

(Weaker Version) If \mathcal{A} is an (α, β)-approximation algorithm for the $\operatorname{RUCFL}(\epsilon)$ then there is an algorithm \mathcal{A}_{C} for UCFL with factor

$$
(10 \alpha+11, \max \{\beta, 1+\epsilon\}) .
$$

New results, Cont'd

Theorem

(Weaker Version) If \mathcal{A} is an (α, β)-approximation algorithm for the $R U C F L(\epsilon)$ then there is an algorithm \mathcal{A}_{C} for UCFL with factor

$$
(10 \alpha+11, \max \{\beta, 1+\epsilon\}) .
$$

Corollary

For any constant $\epsilon>0$, an $(O(1), 1+\epsilon)$-approximation algorithm for the $\operatorname{RUCFL}(\epsilon)$ yields an $(O(1), 1+\epsilon)$-approximation for the UCFL.

New Results, Cont'd

Theorem

There is a polynomial time (10.173,3/2)-approximation algorithm for the UCFLP.

Theorem

There is a polynomial time (30.432, 4/3)-approximation algorithm for the UCFLP.

New Results, Cont'd

Theorem

There is a polynomial time (10.173,3/2)-approximation algorithm for the UCFLP.

Theorem

There is a polynomial time (30.432, 4/3)-approximation algorithm for the UCFLP.

Theorem

There exists a $(1+\epsilon, 1+\epsilon)$-approximation algorithm for the Euclidean UCFL in \mathbb{R}^{2} with running time in quasi-polynomial for any constant $\epsilon>0$.

Some More Definitions

- Large clients = clients with demand more than ϵ, $L=\left\{j \in C: d_{j}>\epsilon\right\}$.

Some More Definitions

- Large clients = clients with demand more than ϵ, $L=\left\{j \in C: d_{j}>\epsilon\right\}$.
■ Small clients $=$ clients with demand at most $\epsilon, S=C \backslash L$.

Some More Definitions

■ Large clients = clients with demand more than ϵ, $L=\left\{j \in C: d_{j}>\epsilon\right\}$.

- Small clients $=$ clients with demand at most $\epsilon, S=C \backslash L$.
- $\phi_{1}: C_{1} \rightarrow F_{1}$ and $\phi_{2}: C_{2} \rightarrow F_{2}$ are consistent if $\phi_{1}(j)=\phi_{2}(j)$ for all $j \in C_{1} \cap C_{2}$.

Some More Definitions

■ Large clients = clients with demand more than ϵ, $L=\left\{j \in C: d_{j}>\epsilon\right\}$.

- Small clients $=$ clients with demand at most $\epsilon, S=C \backslash L$.
- $\phi_{1}: C_{1} \rightarrow F_{1}$ and $\phi_{2}: C_{2} \rightarrow F_{2}$ are consistent if $\phi_{1}(j)=\phi_{2}(j)$ for all $j \in C_{1} \cap C_{2}$.
■ $O P T=$ optimum value

Proof of Reduction to RUCFL

\bullet

0

-

Proof of Reduction to RUCFL

Recall: \mathcal{A} is an (α, β)-approximation $\operatorname{RUCFL}(\epsilon)$.
1- Assign large clients:

Proof of Reduction to RUCFL

Recall: \mathcal{A} is an (α, β)-approximation $\operatorname{RUCFL}(\epsilon)$.
1- Assign large clients:
1 Run \mathcal{A} to assign large clients.

Proof of Reduction to RUCFL

Recall: \mathcal{A} is an (α, β)-approximation $\operatorname{RUCFL}(\epsilon)$.
1- Assign large clients:
1 Run \mathcal{A} to assign large clients.
2 For opened facilities, set $f_{i}=0$ and set u_{i}^{\prime} to unused capacity of facility i.

Proof of Reduction to RUCFL

2- Assign small clients:

Proof of Reduction to RUCFL

2- Assign small clients:
1 Assign small clients fractionally by an approximation algorithm for the splittable CFLP.

Proof of Reduction to RUCFL

2- Assign small clients:
1 Assign small clients fractionally by an approximation algorithm for the splittable CFLP.

2 Assign small clients integrally: round the splittable assignment by Shmoys-Tardos algorithm for the Generalized Assignment Problem.

Proof of Reduction to RUCFL, Cont'd

Basic idea: Ignoring small clients in step 1 is not a big mistake!

Proof of Reduction to RUCFL, Cont'd

Basic idea: Ignoring small clients in step 1 is not a big mistake!

Lemma

(Weaker Version) There exist a fractional assignment of small clients with service cost at most $(\alpha+1)$ OPT and facility cost at most OPT.
splitable CFLP algorithm \rightarrow finds a fractional assignment having cost within constant factor of this fractional assignment.

Proof of Reduction to RUCFL, Cont'd

■ General Idea: Change an optimal solution to a solution consistent with our assignment.

Proof of Reduction to RUCFL, Cont'd

■ General Idea: Change an optimal solution to a solution consistent with our assignment.

- Switch the assignment of large clients one by one.
- service cost \leq service cost of small clients in optimum plus service cost of large clients in optimum (OPT) plus service cost of large clients $\alpha O P T$.

Proof of Reduction to RUCFL, Cont'd

■ General Idea: Change an optimal solution to a solution consistent with our assignment.

- Switch the assignment of large clients one by one.
- service cost \leq service cost of small clients in optimum plus service cost of large clients in optimum (OPT) plus service cost of large clients $\alpha O P T$.

Proof of Reduction to RUCFL, Cont'd

$$
s_{i}=\text { total demand of small clients assigned to } i \text { th facility }
$$

■ General Idea: Change an optimal solution to a solution consistent with our assignment.

- Switch the assignment of large clients one by one.
- service cost \leq service cost of small clients in optimum plus service cost of large clients in optimum (OPT) plus service cost of large clients $\alpha O P T$.

Proof of Reduction to RUCFL, Cont'd

■ General Idea: Change an optimal solution to a solution consistent with our assignment.
■ Switch the assignment of large clients one by one. Order?

- service cost \leq service cost of small clients in optimum plus service cost of large clients in optimum (OPT) plus service cost of large clients $\alpha O P T$.

Proof of Reduction to RUCFL, Cont'd

$$
s_{i}=\text { total demand of small clients assigned to } i \text { th facility }
$$

■ General Idea: Change an optimal solution to a solution consistent with our assignment.
■ Switch the assignment of large clients one by one. Order?

- service cost \leq service cost of small clients in optimum plus service cost of large clients in optimum (OPT) plus service cost of large clients $\alpha O P T$.

Proof of Reduction to RUCFL, Cont'd

$$
s_{i}=\text { total demand of small clients assigned to } i \text { th facility }
$$

■ General Idea: Change an optimal solution to a solution consistent with our assignment.
■ Switch the assignment of large clients one by one. Order?
■ service cost \leq service cost of small clients in optimum plus service cost of large clients in optimum (OPT) plus service cost of large clients $\alpha O P T$.
■ Do all switches simultaneously.

Proof of Reduction to RUCFL, Cont'd

- We showed there is a fractional assignment of small clients with low cost.
- We found one with a low cost by an approximation algorithm. Now?

Proof of Reduction to RUCFL, Cont'd

■ We showed there is a fractional assignment of small clients with low cost.

- We found one with a low cost by an approximation algorithm. Now?
- Using rounding for Generalized Assignment problem:
- Connection cost remains the same.
- It violates the capacities at most to the extent of the largest demand.
- The largest demand is at most $\epsilon \rightarrow$ violation is within factor $1+\epsilon$.

RUCFL($\frac{1}{2}$)

Theorem

There is an exact algorithm for $\operatorname{RUCFL}\left(\frac{1}{2}\right)$.

RUCFL($\frac{1}{2}$)

Theorem

There is an exact algorithm for $\operatorname{RUCFL}\left(\frac{1}{2}\right)$.

proof

■ Each facility serves exactly one client in the optimal solution.

RUCFL($\frac{1}{2}$)

Theorem

There is an exact algorithm for $\operatorname{RUCFL}\left(\frac{1}{2}\right)$.

proof

- Each facility serves exactly one client in the optimal solution.
- The optimal assignment is a matching.

RUCFL($\frac{1}{2}$)

Theorem

There is an exact algorithm for $\operatorname{RUCFL}\left(\frac{1}{2}\right)$.

proof

■ Each facility serves exactly one client in the optimal solution.

- The optimal assignment is a matching.
- The algorithm is a min-cost maximum matching algorithm.

Theorem

There is an exact algorithm for $\operatorname{RUCFL}\left(\frac{1}{2}\right)$.

proof

- Each facility serves exactly one client in the optimal solution.
- The optimal assignment is a matching.
- The algorithm is a min-cost maximum matching algorithm.

Corollary

There is a (10.173, 3/2)-approximation algorithm for the UCFL problem.

Conclusion and Future Works

- To solve the UCFL problem, we transformed the problem to a simpler version.

Conclusion and Future Works

- To solve the UCFL problem, we transformed the problem to a simpler version.
- We solved the simpler version for $\epsilon=1 / 2$ and $\epsilon=1 / 3$ to obtain factor $(10.173,3 / 2)$ and $(30.432,4 / 3)$ approximation algorithms.

Conclusion and Future Works

- To solve the UCFL problem, we transformed the problem to a simpler version.
- We solved the simpler version for $\epsilon=1 / 2$ and $\epsilon=1 / 3$ to obtain factor $(10.173,3 / 2)$ and (30.432, 4/3) approximation algorithms.
■ Open question? Finding a $(O(1), 1+\epsilon)$-approximation algorithm for the UCFL problem.

Thanks for your attention! Questions?

