Introduction	Related Works and new results	Our Results	Conclusion

On Minimum Sum of Radii and Diameters Clustering

Babak Behsaz Mohammad R. Salavatipour

Department of Computing Science University of Alberta

July 4, 2012

Introduction	Related Works and new results	Our Results	Conclusion
●00		000000000	00
Problem Sta	tement		

Minimum Sum of Radii (MSR) and Diameters (MSD) Problem

Input: a metric (V, d): can be seen as an edge-weighted complete graph, an integer k.

Introduction	Related Works and new results	Our Results	Conclusion
●00		000000000	00

Problem Statement

Minimum Sum of Radii (MSR) and Diameters (MSD) Problem

- Input: a metric (V, d): can be seen as an edge-weighted complete graph, an integer k.
- **Goal:** partition the points of V into at most k clusters V_1, V_2, \ldots, V_k .

Introduction	Related Works and new results	Our Results	C
•00			

Problem Statement

Minimum Sum of Radii (MSR) and Diameters (MSD) Problem

- Input: a metric (V, d): can be seen as an edge-weighted complete graph, an integer k.
- **Goal:** partition the points of V into at most k clusters V_1, V_2, \ldots, V_k .
- **Objective:** minimize $\sum_{i=1}^{k} \operatorname{rad}(V_i)$ in MSR, minimize $\sum_{i=1}^{k} \operatorname{diam}(V_i)$ in MSD.
- **Radius and Diameter:** $rad(V_i) = \min_{u \in V_i} \max_{v \in V_i} d(u, v)$, $diam(V_i) = \max_{u,v \in V_i} d(u, v)$

Related Works and new results

Our Results 000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

An Example of MSR and MSD

Input: G=the metric completion of the following graph, k = 2.

Related Works and new results

Our Results 0000000000 Conclusion

An Example of MSR and MSD

Input: *G*=the metric completion of the following graph, k = 2. **Solution 1**: MSR objective = 1 + 2 and MSD objective = 2 + 3.

Related Works and new results

Our Results 0000000000

An Example of MSR and MSD

Input: G=the metric completion of the following graph, k = 2. **Solution 1**: MSR objective = 1 + 2 and MSD objective = 2 + 3. **Solution 2**: MSR objective = 1 + 3 and MSD objective = 1 + 3.

Introduction $\circ \bullet \circ$

Related Works and new results

Our Results 0000000000 Conclusion

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

An Example of MSR and MSD

Input: *G*=the metric completion of the following graph, k = 2. **Solution 1**: **MSR objective** = 1 + 2 and MSD objective = 2 + 3. **Solution 2**: MSR objective = 1 + 3 and MSD objective = 1 + 3.

Related Works and new results

Our Results 0000000000

An Example of MSR and MSD

Input: G=the metric completion of the following graph, k = 2. **Solution 1**: MSR objective = 1 + 2 and MSD objective = 2 + 3. **Solution 2**: MSR objective = 1 + 3 and **MSD objective =** 1 + 3.

Introduction	Related Works and new results	Our Results	Conclusion
○○●		000000000	00
Motivations			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Clustering

Improving the *k*-center clustering.

Introduction	Related Works and new results	Our Results	Conclusion
000			
NALL' AL'			
Motivation	าร		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Clustering

Improving the *k*-center clustering.

Communication Networks

Location of base stations in a wireless data network.

Introduction	Related Works and new results	Our Results	Conclusion
000	•00	000000000	00
MSR and MSE) Previous Works: th	e general case	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Hardness results:

• MSD is $(2 - \epsilon)$ -hard.

Introduction	Related Works and new results	Our Results	Conclusion
	$\odot \odot \odot$		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

MSR and MSD Previous Works: the general case

Hardness results:

- MSD is (2ϵ) -hard.
- MSR is NP-hard.

Introduction	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

MSR and MSD Previous Works: the general case

Hardness results:

- MSD is (2ϵ) -hard.
- MSR is NP-hard.

Algorithmic results:

• Observation: an α -approximation for MSR (MSD) \rightarrow a (2 α)-approximation for MSD (MSR)

Introd	

MSR and MSD Previous Works: the general case

Hardness results:

- MSD is (2ϵ) -hard.
- MSR is NP-hard.

Algorithmic results:

- Observation: an α -approximation for MSR (MSD) \rightarrow a (2 α)-approximation for MSD (MSR)
- 3.504-approximation for MSR (Charikar-Panigrahy, STOC'01)

Introd	

MSR and MSD Previous Works: the general case

Hardness results:

- MSD is (2ϵ) -hard.
- MSR is NP-hard.

Algorithmic results:

- Observation: an α -approximation for MSR (MSD) \rightarrow a (2 α)-approximation for MSD (MSR)
- 3.504-approximation for MSR (Charikar-Panigrahy, STOC'01) → 7.008-approximation for MSD

Introd	

MSR and MSD Previous Works: the general case

Hardness results:

- MSD is (2ϵ) -hard.
- MSR is NP-hard.

Algorithmic results:

- Observation: an α -approximation for MSR (MSD) \rightarrow a (2 α)-approximation for MSD (MSR)
- 3.504-approximation for MSR (Charikar-Panigrahy, STOC'01) → 7.008-approximation for MSD
- exact algorithm for MSR in time $n^{O(\log n \log \Delta)}$ where Δ is the ratio of largest distance over the smallest distance (Gibson *et al.*, SWAT'08) \rightarrow QPTAS for MSR

Introduction	Related Works and new results	Our Results	Conclusion
000	○●○	000000000	00
Previous Wo	rks: the special cases		

MSD, k = 2: exact algorithm (Hansen-Jaumard, J. of Classification'87)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	Related Works and new results ○●○	Our Results 0000000000	Conclusion

Previous Works: the special cases

 MSD, k = 2: exact algorithm (Hansen-Jaumard, J. of Classification'87)

 Euclidean MSD, constant k: exact algorithm. (Capoyleas-Rote-Woeginger, J. of Algorithms'91) Introduction 000 Related Works and new results

Our Results

Previous Works: the special cases

- MSD, k = 2: exact algorithm (Hansen-Jaumard, J. of Classification'87)
- Euclidean MSD, constant k: exact algorithm. (Capoyleas-Rote-Woeginger, J. of Algorithms'91)
- General MSD, constant k: 2-approximation ← comes from an exact algorithm for MSR. (Doddi *et al.*, SWAT'00 and Nordic J. of Computing'00)

Introduction 000 Related Works and new results

Our Results

Previous Works: the special cases

- MSD, k = 2: exact algorithm (Hansen-Jaumard, J. of Classification'87)
- Euclidean MSD, constant k: exact algorithm. (Capoyleas-Rote-Woeginger, J. of Algorithms'91)
- General MSD, constant k: 2-approximation ← comes from an exact algorithm for MSR. (Doddi *et al.*, SWAT'00 and Nordic J. of Computing'00)
- Euclidean MSR: exact algorithm → a 2-approximation for Euclidean MSD. (Gibson *et al.*, SODA'08)

Introduction	Related Works and new results	Our Results	Conclusion
000	○○●	000000000	00
Overview o	f main results		

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Related Works and new results	Our Results	Conclusion
000	○○●	000000000	
Overview of	main results		

Theorem

There is a polynomial time exact algorithm for the unweighted MSR problem when no clusters of radius zero) is allowed.

Introduction 000	Related Works and new results ○○●	Our Results	Conclusion
Overview of	f main results		

Theorem

There is a polynomial time exact algorithm for the unweighted MSR problem when no clusters of radius zero) is allowed.

Euclidean MSD: exact algorithm for constant k. Euclidean MSD with variable k?

Introduction	Related Works and new results	Our Results	Conclusion
000	○○●	000000000	00
Overview o	f main results		

Theorem

There is a polynomial time exact algorithm for the unweighted MSR problem when no clusters of radius zero) is allowed.

- Euclidean MSD: exact algorithm for constant k. Euclidean MSD with variable k?
- 2-approximation for Euclidean MSD + ratio 2 hardness for general MSD. Can we beat factor 2?

Introduction	Related Works and new results $\circ \circ \bullet$	Our Results	Conclusion
000		000000000	00
	f main results		

Theorem

There is a polynomial time exact algorithm for the unweighted MSR problem when no clusters of radius zero) is allowed.

- Euclidean MSD: exact algorithm for constant k. Euclidean MSD with variable k?
- 2-approximation for Euclidean MSD + ratio 2 hardness for general MSD. Can we beat factor 2?

Theorem

There is a PTAS for the Euclidean MSD which runs in $n^{O(1/\epsilon)}$

Introduction	Related Works and new results	Our Results	Conclusion
000	000	•000000000	

MSR Restricted to Unweighted Graphs

• Metric: the shortest path metric of an unweighted graph.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction 000	000	d Works an	d new results	Our Results ●00000000	Conclusion 00

MSR Restricted to Unweighted Graphs

- Metric: the shortest path metric of an unweighted graph.
- \blacksquare Solving MSR for the connected graphs \rightarrow solve the general case.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Introduction 000 Related Works and new results

Our Results •000000000 Conclusion 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

MSR Restricted to Unweighted Graphs

Definition

B(v, r) the set of vertices $\{u \in V : d(v, u) \le r\}$

Introdu	iction

Related Works and new results

Our Results •000000000 Conclusion 00

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

MSR Restricted to Unweighted Graphs

Definition

$$B(v, r)$$
 the set of vertices $\{u \in V : d(v, u) \le r\}$

zero ball or singleton Ball of radius zero

Introdu	iction

Related Works and new results

Our Results •000000000 Conclusion

MSR Restricted to Unweighted Graphs

Definition

$$B(v, r)$$
 the set of vertices $\{u \in V : d(v, u) \le r\}$

zero ball or singleton Ball of radius zero

two balls intersect At least one common vertex

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Introducti	

Related Works and new results

Our Results •000000000 Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

MSR Restricted to Unweighted Graphs

Definition

$$B(v, r)$$
 the set of vertices $\{u \in V : d(v, u) \le r\}$

zero ball or singleton Ball of radius zero

two balls intersect At least one common vertex

two balls adjacent do not intersect and an edge connecting them

Introducti	

Our Results •000000000

MSR Restricted to Unweighted Graphs

Definition

B(v, r) the set of vertices $\{u \in V : d(v, u) \le r\}$

zero ball or singleton Ball of radius zero

two balls intersect At least one common vertex

two balls adjacent do not intersect and an edge connecting them

Canonical optimal solution has minimum number of balls

Introduction 000	Related Works and new results	Our Results	Conclusion

Properties of a canonical optimal solution

Lemma

A canonical optimal solution does not have any intersecting balls.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Related Works and new results	Our Results	Conclusion
000		000000000	00

Properties of a canonical optimal solution

Lemma

A canonical optimal solution does not have any intersecting balls.

Proof: Substitute these balls with $B(v, r_1 + r_2)$.

Introduction	Related Works and new results	Our Results
		000000000

Properties of a canonical optimal solution

Lemm<u>a</u>

A canonical optimal solution does not have any intersecting balls.

Proof: Choose v at distance r_2 from v_1 on path v_1-v_2 .

Introduction	Related Works and new results	Our Results	Conclusio
		000000000	

Properties of a canonical optimal solution

Lemma

A canonical optimal solution does not have any intersecting balls.

Proof: Distance of v from $B(v_1, r_1)$ is $r_2 + r_1$.

Introduction	Related Works and new results	Our Results	Conclusio
		000000000	

Properties of a canonical optimal solution

Lemma

A canonical optimal solution does not have any intersecting balls.

Proof: Distance of v from $B(v_2, r_2)$ is $r_1 + r_2$.

Introduction	Related Works and new results	Our Results	Conclusion
000		o●oooooooo	00

Properties of a canonical optimal solution

Lemma

A canonical optimal solution does not have any intersecting balls.

Proof: Thus, the ball $B(v, r_1 + r_2)$ covers all vertices.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Introduction Related Works and new results C 000 000 C

Our Results

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Properties of a canonical optimal solution, Cont'd

Lemm<u>a</u>

In a canonical optimal solution, each ball is adjacent to at most two balls. (Fails with existence of zero balls.)

Related Works and new results

Our Results 0000000000

Properties of a canonical optimal solution, Cont'd

Lemma

In a canonical optimal solution, each ball is adjacent to at most two balls. (Fails with existence of zero balls.)

Proof: Substitute these balls with $B(u, r + r_1 + r_2 + 1)$.

 Introduction
 Related Works and new results
 Our Results
 Conclusion

 000
 000
 000
 000

Properties of a canonical optimal solution, Cont'd

Corollary

In a canonical optimal solution, the balls form a path or cycle.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 Introduction
 Related Works and new results
 Our Results
 Conclusion

 000
 000
 000
 000

Properties of a canonical optimal solution, Cont'd

Corollary

In a canonical optimal solution, the balls form a path or cycle.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

• Observation: the number of all possible balls $\leq n^2$.

Related Works and new results

Our Results

Conclusion

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Properties of a canonical optimal solution, Cont'd

Corollary

In a canonical optimal solution, the balls form a path or cycle.

- Observation: the number of all possible balls $\leq n^2$.
- The case of cycle is similar to the case of path.

Properties of a canonical optimal solution, Cont'd

Corollary

In a canonical optimal solution, the balls form a path or cycle.

- Observation: the number of all possible balls $\leq n^2$.
- The case of cycle is similar to the case of path.
- Consider a canonical optimal solution: $B_1^*, B_2^*, \ldots, B_k^*$.

Introduction	Related Works and new results	Our Results	Conclusion
000		0000●00000	00
General Idea			

Guess the last ball, remove it, and solve recursively.

Introduction 000	Related Works and new results	Our Results	Conclusion 00
General Idea			

- Guess the last ball, remove it, and solve recursively.
- BESTCOVER(H, j):
 - **1** For all choices of a ball $B, C \leftarrow B \cup \text{BestCover}(H \setminus B, j-1)$.

2 Return the best solution in C.

Introduction	Related Works and new results	Our Results	Conclusion
000		000000000	00
General Idea			

- Guess the last ball, remove it, and solve recursively.
- BESTCOVER(H, j):

1 For all choices of a ball $B, C \leftarrow B \cup \text{BestCover}(H \setminus B, j-1)$. **2** Return the best solution in C.

• G_i : the first *i* balls, $G_k = G$ and $G_{i-1} = G_i \setminus B_i^*$

Introduction	Related Works and new results	Our Results	Conclusion
000		0000000000	00
General Idea			

- Guess the last ball, remove it, and solve recursively.
- BESTCOVER(H, j):

For all choices of a ball B, C ← B ∪ BESTCOVER(H \ B, j − 1).
 Return the best solution in C.

- G_i : the first *i* balls, $G_k = G$ and $G_{i-1} = G_i \setminus B_i^*$
- BESTCOVER(H, j): optimal when $H = G_i$ and j = i

Introduction	Related Works and new results	Our Results	Conclusion
000		000000000	00
General Idea			

- Guess the last ball, remove it, and solve recursively.
- BESTCOVER(H, j):

For all choices of a ball B, C ← B ∪ BESTCOVER(H \ B, j − 1).
 Return the best solution in C.

- G_i : the first *i* balls, $G_k = G$ and $G_{i-1} = G_i \setminus B_i^*$
- BESTCOVER(H, j): optimal when $H = G_i$ and j = i
- When $H = G_i$, j = i, and $B = B_i^*$, C contains BESTCOVER $(G_{i-1}, i-1) \cup B_i^*$.

Introduction	Related Works and new results	Our Results	Conclusion
000		000000000	00
General Idea			

- Guess the last ball, remove it, and solve recursively.
- BESTCOVER(H, j):

For all choices of a ball B, C ← B ∪ BESTCOVER(H \ B, j − 1).
 Return the best solution in C.

- G_i : the first *i* balls, $G_k = G$ and $G_{i-1} = G_i \setminus B_i^*$
- BESTCOVER(H, j): optimal when $H = G_i$ and j = i
- When $H = G_i$, j = i, and $B = B_i^*$, C contains BESTCOVER $(G_{i-1}, i-1) \cup B_i^*$.

Dealing with	running time		
Introduction	Related Works and new results	Our Results	Conclusion
000		0000000000	00

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Without any book keeping, the running time is $O((n^2)^k + k2^n)$.

Introduction	Related Works and new results	Our Results	Conclusion
000	000	0000000000	00
Dealing with	running time		

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Without any book keeping, the running time is $O((n^2)^k + k2^n)$.
- Dynamic programming $\text{TABLE}[H, j] \rightarrow O(k2^n)$.

	ith running time		
Introduction 000	Related Works and new results	Our Results	Conclusion 00

- Without any book keeping, the running time is $O((n^2)^k + k2^n)$.
- Dynamic programming $\text{TABLE}[H, j] \rightarrow O(k2^n)$.
- **Observation:** we are interested to solve only the subproblems corresponding to graphs *G_i*.

		000000000	00
Dealing wi	th running time		

- Without any book keeping, the running time is $O((n^2)^k + k2^n)$.
- Dynamic programming $\text{TABLE}[H, j] \rightarrow O(k2^n)$.
- **Observation:** we are interested to solve only the subproblems corresponding to graphs *G_i*.

• \mathcal{F} : a poly. size family of subgraphs, contains all G_i .

Introduction	Related Works and new results	Our Results	Conclusion
000		000000000	00
Dealing wi	th running time		

- Without any book keeping, the running time is $O((n^2)^k + k2^n)$.
- Dynamic programming $\text{TABLE}[H, j] \rightarrow O(k2^n)$.
- **Observation:** we are interested to solve only the subproblems corresponding to graphs *G_i*.

- \mathcal{F} : a poly. size family of subgraphs, contains all G_i .
- Run BESTCOVER(H, j) only for $H \in \mathcal{F}$.

	a ha na ana taona dha a		
		000000000	
Introduction	Related Works and new results	Our Results	Conclusion

Dealing with running time

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Introduction	Related Works and new results	Our Results	Conclusion
000	000	0000000000	00
Finding ${\cal F}$			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lemma

 \mathcal{F} can be computed in polynomial time, has at most $2n^2 + 1$ members and contains G_i for all $1 \le i \le k$.

Introduction	Related Works and new results	Our Results	Conclusion
000	000	0000000000	00
Finding ${\cal F}$			

Lemma

 \mathcal{F} can be computed in polynomial time, has at most $2n^2 + 1$ members and contains G_i for all $1 \le i \le k$.

Proof: The algorithm for finding \mathcal{F} is as follows:

Introduction	Related Works and new results	Our Results	Conclusion
000		0000000000	00
Finding ${\cal F}$			

Lemma

 \mathcal{F} can be computed in polynomial time, has at most $2n^2 + 1$ members and contains G_i for all $1 \le i \le k$.

Proof: The algorithm for finding \mathcal{F} is as follows:

I For each ball B, consider $G \setminus B$. If it has at most two components, add each component to \mathcal{F} .

Introduction	Related Works and new results	Our Results	Conclusion
000		0000000000	00
Finding ${\cal F}$			

Lemma

 \mathcal{F} can be computed in polynomial time, has at most $2n^2 + 1$ members and contains G_i for all $1 \le i \le k$.

Proof: The algorithm for finding \mathcal{F} is as follows:

1 For each ball *B*, consider $G \setminus B$. If it has at most two components, add each component to \mathcal{F} .

Introduction	Related Works and new results	Our Results	Conclusion
000		000000€000	00
Finding ${\cal F}$			

Lemma

 \mathcal{F} can be computed in polynomial time, has at most $2n^2 + 1$ members and contains G_i for all $1 \le i \le k$.

Proof: The algorithm for finding \mathcal{F} is as follows:

1 For each ball *B*, consider $G \setminus B$. If it has at most two components, add each component to \mathcal{F} .

2 Add G to \mathcal{F} .

Introduction 000	Related Works and new results	Our Results	Conclusion 00
Euclidean MS	Π		

• The clusters can be characterized as polygons in plane.

Introduction 000	Related Works and new results	Our Results	Conclusion 00
Euclidean MS	Π		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- The clusters can be characterized as polygons in plane.
- Similar Gibson *et al.*'s (SODA'08) exact algorithm for Euclidean MSR.

Introduction	Related Works and new results	Our Results	Conclusion
000		○○○○○○○●○	00
Euclidean MS	D		

- The clusters can be characterized as polygons in plane.
- Similar Gibson *et al.*'s (SODA'08) exact algorithm for Euclidean MSR.
- High level idea of Gibson *et al.*'s exact algorithm: separate an instance into two parts by guessing a constant number of discs in optimum.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Introduction	Related Works and new results	Our Results	Conclusion
		0000000000	
Euclidean	MCD		

• The clusters can be characterized as polygons in plane.

поеан

- Similar Gibson *et al.*'s (SODA'08) exact algorithm for Euclidean MSR.
- High level idea of Gibson *et al.*'s exact algorithm: separate an instance into two parts by guessing a constant number of discs in optimum.

■ The number of possible discs is polynomial → one can enumerate all constant size subset of discs in poly. time.

Introduction	Related Works and new results	Our Results	Conclusion
		000000000	
Euclidean	MSD		

• The clusters can be characterized as polygons in plane.

IUEAH

- Similar Gibson *et al.*'s (SODA'08) exact algorithm for Euclidean MSR.
- High level idea of Gibson *et al.*'s exact algorithm: separate an instance into two parts by guessing a constant number of discs in optimum.

- The number of possible discs is polynomial → one can enumerate all constant size subset of discs in poly. time.
- Recursively solve each part using dynamic programming.

Related Works and new results

Our Results

Conclusion

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Adapting Gibson et al.'s Algorithm

Main Difficulties

Exponential possible clusters.

Related Works and new results

Our Results

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Adapting Gibson et al.'s Algorithm

Main Difficulties

- Exponential possible clusters.
- \blacksquare Thin clusters \rightarrow some packing arguments fails.

Related Works and new results

Our Results

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Adapting Gibson et al.'s Algorithm

Main Difficulties

- Exponential possible clusters.
- \blacksquare Thin clusters \rightarrow some packing arguments fails.
- Our modifications \rightarrow analysis should be changed.

Adapting Gibson et al.'s Algorithm

Main Difficulties

- Exponential possible clusters.
- Thin clusters \rightarrow some packing arguments fails.
- Our modifications \rightarrow analysis should be changed.

Handling the first issue

■ Approximate each polygon with an enclosing polygon of diameter within factor (1 + ϵ).

Our Results

Adapting Gibson et al.'s Algorithm

Main Difficulties

- Exponential possible clusters.
- Thin clusters \rightarrow some packing arguments fails.
- Our modifications \rightarrow analysis should be changed.

Handling the first issue

- Approximate each polygon with an enclosing polygon of diameter within factor (1 + ϵ).
- New polygon is simpler: determined by $O(1/\epsilon)$ points $\rightarrow O(n^{1/\epsilon})$ new polygons.

Our Results

Adapting Gibson et al.'s Algorithm

Main Difficulties

- Exponential possible clusters.
- Thin clusters \rightarrow some packing arguments fails.
- Our modifications \rightarrow analysis should be changed.

Handling the first issue

- Approximate each polygon with an enclosing polygon of diameter within factor (1 + ϵ).
- New polygon is simpler: determined by $O(1/\epsilon)$ points $\rightarrow O(n^{1/\epsilon})$ new polygons.
- size *c* subsets of new polygons, enumerable in $O(n^{\frac{c}{\epsilon}})$.

Adapting Gibson et al.'s Algorithm

Main Difficulties

- Exponential possible clusters.
- Thin clusters \rightarrow some packing arguments fails.
- Our modifications \rightarrow analysis should be changed.

Handling the first issue

- Approximate each polygon with an enclosing polygon of diameter within factor (1 + ϵ).
- New polygon is simpler: determined by $O(1/\epsilon)$ points $\rightarrow O(n^{1/\epsilon})$ new polygons.
- size *c* subsets of new polygons, enumerable in $O(n^{\frac{c}{\epsilon}})$.
- Intuitive Example: A regular polygon and the polygon constructed from extension of every *i*th edges of it

Introduction	Related Works and new results	Our Results	Conclusion
000		000000000	●0

Conclusion and Future Works

• The difficult core of the problem: finding the zero balls.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	

Related Works and new results

Our Results

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion and Future Works

- The difficult core of the problem: finding the zero balls.
- Open questions: an exact algorithm in presence of singletons? A PTAS for the general version?

Related Works and new results

Our Results

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion and Future Works

- The difficult core of the problem: finding the zero balls.
- Open questions: an exact algorithm in presence of singletons? A PTAS for the general version?
- We gave a PTAS for Euclidean MSD. The complexity of Euclidean MSD?

Related Works and new results

Our Results 0000000000

Conclusion and Future Works

- The difficult core of the problem: finding the zero balls.
- Open questions: an exact algorithm in presence of singletons? A PTAS for the general version?
- We gave a PTAS for Euclidean MSD. The complexity of Euclidean MSD?
- The MSD problem with constant k: we found an exact algorithm.

Introduction	Related Works and new results	Our Results	Conclusion
			00

Thanks for your attention! Questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?