
Introduction Related Works and new results Our Results Conclusion

On Minimum Sum of Radii and Diameters
Clustering

Babak Behsaz Mohammad R. Salavatipour

Department of Computing Science
University of Alberta

July 4, 2012

Introduction Related Works and new results Our Results Conclusion

Problem Statement

Minimum Sum of Radii (MSR) and Diameters (MSD) Problem

Input: a metric (V , d): can be seen as an edge-weighted
complete graph, an integer k .

Goal: partition the points of V into at most k clusters
V1,V2, . . . ,Vk .

Objective: minimize
∑k

i=1 rad(Vi) in MSR, minimize∑k
i=1 diam(Vi) in MSD.

Radius and Diameter: rad(Vi) = minu∈Vi
maxv∈Vi

d(u, v),
diam(Vi) = maxu,v∈Vi

d(u, v)

Introduction Related Works and new results Our Results Conclusion

Problem Statement

Minimum Sum of Radii (MSR) and Diameters (MSD) Problem

Input: a metric (V , d): can be seen as an edge-weighted
complete graph, an integer k .

Goal: partition the points of V into at most k clusters
V1,V2, . . . ,Vk .

Objective: minimize
∑k

i=1 rad(Vi) in MSR, minimize∑k
i=1 diam(Vi) in MSD.

Radius and Diameter: rad(Vi) = minu∈Vi
maxv∈Vi

d(u, v),
diam(Vi) = maxu,v∈Vi

d(u, v)

Introduction Related Works and new results Our Results Conclusion

Problem Statement

Minimum Sum of Radii (MSR) and Diameters (MSD) Problem

Input: a metric (V , d): can be seen as an edge-weighted
complete graph, an integer k .

Goal: partition the points of V into at most k clusters
V1,V2, . . . ,Vk .

Objective: minimize
∑k

i=1 rad(Vi) in MSR, minimize∑k
i=1 diam(Vi) in MSD.

Radius and Diameter: rad(Vi) = minu∈Vi
maxv∈Vi

d(u, v),
diam(Vi) = maxu,v∈Vi

d(u, v)

Introduction Related Works and new results Our Results Conclusion

An Example of MSR and MSD

Input: G=the metric completion of the following graph, k = 2.

Solution 1: MSR objective = 1 + 2 and MSD objective = 2 + 3.
Solution 2: MSR objective = 1 + 3 and MSD objective = 1 + 3.

Introduction Related Works and new results Our Results Conclusion

An Example of MSR and MSD

Input: G=the metric completion of the following graph, k = 2.
Solution 1: MSR objective = 1 + 2 and MSD objective = 2 + 3.

Solution 2: MSR objective = 1 + 3 and MSD objective = 1 + 3.

Introduction Related Works and new results Our Results Conclusion

An Example of MSR and MSD

Input: G=the metric completion of the following graph, k = 2.
Solution 1: MSR objective = 1 + 2 and MSD objective = 2 + 3.
Solution 2: MSR objective = 1 + 3 and MSD objective = 1 + 3.

Introduction Related Works and new results Our Results Conclusion

An Example of MSR and MSD

Input: G=the metric completion of the following graph, k = 2.
Solution 1: MSR objective = 1 + 2 and MSD objective = 2 + 3.
Solution 2: MSR objective = 1 + 3 and MSD objective = 1 + 3.

Introduction Related Works and new results Our Results Conclusion

An Example of MSR and MSD

Input: G=the metric completion of the following graph, k = 2.
Solution 1: MSR objective = 1 + 2 and MSD objective = 2 + 3.
Solution 2: MSR objective = 1 + 3 and MSD objective = 1 + 3.

Introduction Related Works and new results Our Results Conclusion

Motivations

Clustering

Improving the k-center clustering.

Communication Networks

Location of base stations in a wireless data network.

Introduction Related Works and new results Our Results Conclusion

Motivations

Clustering

Improving the k-center clustering.

Communication Networks

Location of base stations in a wireless data network.

Introduction Related Works and new results Our Results Conclusion

MSR and MSD Previous Works: the general case

Hardness results:

MSD is (2− ε)-hard.

MSR is NP-hard.

Algorithmic results:

Observation: an α-approximation for MSR (MSD) → a
(2α)-approximation for MSD (MSR)

3.504-approximation for MSR (Charikar-Panigrahy, STOC’01)

→ 7.008-approximation for MSD

exact algorithm for MSR in time nO(log n log ∆) where ∆ is the
ratio of largest distance over the smallest distance (Gibson et
al., SWAT’08) → QPTAS for MSR

Introduction Related Works and new results Our Results Conclusion

MSR and MSD Previous Works: the general case

Hardness results:

MSD is (2− ε)-hard.

MSR is NP-hard.

Algorithmic results:

Observation: an α-approximation for MSR (MSD) → a
(2α)-approximation for MSD (MSR)

3.504-approximation for MSR (Charikar-Panigrahy, STOC’01)

→ 7.008-approximation for MSD

exact algorithm for MSR in time nO(log n log ∆) where ∆ is the
ratio of largest distance over the smallest distance (Gibson et
al., SWAT’08) → QPTAS for MSR

Introduction Related Works and new results Our Results Conclusion

MSR and MSD Previous Works: the general case

Hardness results:

MSD is (2− ε)-hard.

MSR is NP-hard.

Algorithmic results:

Observation: an α-approximation for MSR (MSD) → a
(2α)-approximation for MSD (MSR)

3.504-approximation for MSR (Charikar-Panigrahy, STOC’01)

→ 7.008-approximation for MSD

exact algorithm for MSR in time nO(log n log ∆) where ∆ is the
ratio of largest distance over the smallest distance (Gibson et
al., SWAT’08) → QPTAS for MSR

Introduction Related Works and new results Our Results Conclusion

MSR and MSD Previous Works: the general case

Hardness results:

MSD is (2− ε)-hard.

MSR is NP-hard.

Algorithmic results:

Observation: an α-approximation for MSR (MSD) → a
(2α)-approximation for MSD (MSR)

3.504-approximation for MSR (Charikar-Panigrahy, STOC’01)

→ 7.008-approximation for MSD

exact algorithm for MSR in time nO(log n log ∆) where ∆ is the
ratio of largest distance over the smallest distance (Gibson et
al., SWAT’08) → QPTAS for MSR

Introduction Related Works and new results Our Results Conclusion

MSR and MSD Previous Works: the general case

Hardness results:

MSD is (2− ε)-hard.

MSR is NP-hard.

Algorithmic results:

Observation: an α-approximation for MSR (MSD) → a
(2α)-approximation for MSD (MSR)

3.504-approximation for MSR (Charikar-Panigrahy, STOC’01)
→ 7.008-approximation for MSD

exact algorithm for MSR in time nO(log n log ∆) where ∆ is the
ratio of largest distance over the smallest distance (Gibson et
al., SWAT’08) → QPTAS for MSR

Introduction Related Works and new results Our Results Conclusion

MSR and MSD Previous Works: the general case

Hardness results:

MSD is (2− ε)-hard.

MSR is NP-hard.

Algorithmic results:

Observation: an α-approximation for MSR (MSD) → a
(2α)-approximation for MSD (MSR)

3.504-approximation for MSR (Charikar-Panigrahy, STOC’01)
→ 7.008-approximation for MSD

exact algorithm for MSR in time nO(log n log ∆) where ∆ is the
ratio of largest distance over the smallest distance (Gibson et
al., SWAT’08) → QPTAS for MSR

Introduction Related Works and new results Our Results Conclusion

Previous Works: the special cases

MSD, k = 2: exact algorithm (Hansen-Jaumard, J. of
Classification’87)

Euclidean MSD, constant k: exact algorithm.
(Capoyleas-Rote-Woeginger, J. of Algorithms’91)

General MSD, constant k: 2-approximation ← comes from an
exact algorithm for MSR. (Doddi et al., SWAT’00 and Nordic
J. of Computing’00)

Euclidean MSR: exact algorithm → a 2-approximation for
Euclidean MSD. (Gibson et al., SODA’08)

Introduction Related Works and new results Our Results Conclusion

Previous Works: the special cases

MSD, k = 2: exact algorithm (Hansen-Jaumard, J. of
Classification’87)

Euclidean MSD, constant k: exact algorithm.
(Capoyleas-Rote-Woeginger, J. of Algorithms’91)

General MSD, constant k: 2-approximation ← comes from an
exact algorithm for MSR. (Doddi et al., SWAT’00 and Nordic
J. of Computing’00)

Euclidean MSR: exact algorithm → a 2-approximation for
Euclidean MSD. (Gibson et al., SODA’08)

Introduction Related Works and new results Our Results Conclusion

Previous Works: the special cases

MSD, k = 2: exact algorithm (Hansen-Jaumard, J. of
Classification’87)

Euclidean MSD, constant k: exact algorithm.
(Capoyleas-Rote-Woeginger, J. of Algorithms’91)

General MSD, constant k: 2-approximation ← comes from an
exact algorithm for MSR. (Doddi et al., SWAT’00 and Nordic
J. of Computing’00)

Euclidean MSR: exact algorithm → a 2-approximation for
Euclidean MSD. (Gibson et al., SODA’08)

Introduction Related Works and new results Our Results Conclusion

Previous Works: the special cases

MSD, k = 2: exact algorithm (Hansen-Jaumard, J. of
Classification’87)

Euclidean MSD, constant k: exact algorithm.
(Capoyleas-Rote-Woeginger, J. of Algorithms’91)

General MSD, constant k: 2-approximation ← comes from an
exact algorithm for MSR. (Doddi et al., SWAT’00 and Nordic
J. of Computing’00)

Euclidean MSR: exact algorithm → a 2-approximation for
Euclidean MSD. (Gibson et al., SODA’08)

Introduction Related Works and new results Our Results Conclusion

Overview of main results

Metrics with polynomially bounded ∆: exact algorithm for MSR in
time nO(log2 n) → exact algorithm for MSR in this case?

Theorem

There is a polynomial time exact algorithm for the unweighted
MSR problem when no clusters of radius zero) is allowed.

Euclidean MSD: exact algorithm for constant k . Euclidean
MSD with variable k?

2-approximation for Euclidean MSD + ratio 2 hardness for
general MSD. Can we beat factor 2?

Theorem

There is a PTAS for the Euclidean MSD which runs in nO(1/ε)

Introduction Related Works and new results Our Results Conclusion

Overview of main results

Metrics with polynomially bounded ∆: exact algorithm for MSR in
time nO(log2 n) → exact algorithm for MSR in this case?

Theorem

There is a polynomial time exact algorithm for the unweighted
MSR problem when no clusters of radius zero) is allowed.

Euclidean MSD: exact algorithm for constant k . Euclidean
MSD with variable k?

2-approximation for Euclidean MSD + ratio 2 hardness for
general MSD. Can we beat factor 2?

Theorem

There is a PTAS for the Euclidean MSD which runs in nO(1/ε)

Introduction Related Works and new results Our Results Conclusion

Overview of main results

Metrics with polynomially bounded ∆: exact algorithm for MSR in
time nO(log2 n) → exact algorithm for MSR in this case?

Theorem

There is a polynomial time exact algorithm for the unweighted
MSR problem when no clusters of radius zero) is allowed.

Euclidean MSD: exact algorithm for constant k . Euclidean
MSD with variable k?

2-approximation for Euclidean MSD + ratio 2 hardness for
general MSD. Can we beat factor 2?

Theorem

There is a PTAS for the Euclidean MSD which runs in nO(1/ε)

Introduction Related Works and new results Our Results Conclusion

Overview of main results

Metrics with polynomially bounded ∆: exact algorithm for MSR in
time nO(log2 n) → exact algorithm for MSR in this case?

Theorem

There is a polynomial time exact algorithm for the unweighted
MSR problem when no clusters of radius zero) is allowed.

Euclidean MSD: exact algorithm for constant k . Euclidean
MSD with variable k?

2-approximation for Euclidean MSD + ratio 2 hardness for
general MSD. Can we beat factor 2?

Theorem

There is a PTAS for the Euclidean MSD which runs in nO(1/ε)

Introduction Related Works and new results Our Results Conclusion

Overview of main results

Metrics with polynomially bounded ∆: exact algorithm for MSR in
time nO(log2 n) → exact algorithm for MSR in this case?

Theorem

There is a polynomial time exact algorithm for the unweighted
MSR problem when no clusters of radius zero) is allowed.

Euclidean MSD: exact algorithm for constant k . Euclidean
MSD with variable k?

2-approximation for Euclidean MSD + ratio 2 hardness for
general MSD. Can we beat factor 2?

Theorem

There is a PTAS for the Euclidean MSD which runs in nO(1/ε)

Introduction Related Works and new results Our Results Conclusion

MSR Restricted to Unweighted Graphs

Metric: the shortest path metric of an unweighted graph.

Solving MSR for the connected graphs → solve the general
case.

Definition

B(v , r) the set of vertices {u ∈ V : d(v , u) ≤ r}
zero ball or singleton Ball of radius zero

two balls intersect At least one common vertex

two balls adjacent do not intersect and an edge connecting them

Canonical optimal solution has minimum number of balls

Introduction Related Works and new results Our Results Conclusion

MSR Restricted to Unweighted Graphs

Metric: the shortest path metric of an unweighted graph.

Solving MSR for the connected graphs → solve the general
case.

Definition

B(v , r) the set of vertices {u ∈ V : d(v , u) ≤ r}
zero ball or singleton Ball of radius zero

two balls intersect At least one common vertex

two balls adjacent do not intersect and an edge connecting them

Canonical optimal solution has minimum number of balls

Introduction Related Works and new results Our Results Conclusion

MSR Restricted to Unweighted Graphs

Definition

B(v , r) the set of vertices {u ∈ V : d(v , u) ≤ r}

zero ball or singleton Ball of radius zero

two balls intersect At least one common vertex

two balls adjacent do not intersect and an edge connecting them

Canonical optimal solution has minimum number of balls

v

B(v, 1)

Introduction Related Works and new results Our Results Conclusion

MSR Restricted to Unweighted Graphs

Definition

B(v , r) the set of vertices {u ∈ V : d(v , u) ≤ r}
zero ball or singleton Ball of radius zero

two balls intersect At least one common vertex

two balls adjacent do not intersect and an edge connecting them

Canonical optimal solution has minimum number of balls

v
B(v, 0)

Introduction Related Works and new results Our Results Conclusion

MSR Restricted to Unweighted Graphs

Definition

B(v , r) the set of vertices {u ∈ V : d(v , u) ≤ r}
zero ball or singleton Ball of radius zero

two balls intersect At least one common vertex

two balls adjacent do not intersect and an edge connecting them

Canonical optimal solution has minimum number of balls

v

B(v, 1)

u
B(u, 2)

Introduction Related Works and new results Our Results Conclusion

MSR Restricted to Unweighted Graphs

Definition

B(v , r) the set of vertices {u ∈ V : d(v , u) ≤ r}
zero ball or singleton Ball of radius zero

two balls intersect At least one common vertex

two balls adjacent do not intersect and an edge connecting them

Canonical optimal solution has minimum number of balls

v

B(v, 1)

x
B(x, 2)

Introduction Related Works and new results Our Results Conclusion

MSR Restricted to Unweighted Graphs

Definition

B(v , r) the set of vertices {u ∈ V : d(v , u) ≤ r}
zero ball or singleton Ball of radius zero

two balls intersect At least one common vertex

two balls adjacent do not intersect and an edge connecting them

Canonical optimal solution has minimum number of balls

Introduction Related Works and new results Our Results Conclusion

Properties of a canonical optimal solution

Lemma

A canonical optimal solution does not have any intersecting balls.

Proof:

Introduction Related Works and new results Our Results Conclusion

Properties of a canonical optimal solution

Lemma

A canonical optimal solution does not have any intersecting balls.

Proof: Substitute these balls with B(v , r1 + r2).

v1

v2r1

r2
r1

r2

u

B(v1, r1)

B(v2, r2)

Introduction Related Works and new results Our Results Conclusion

Properties of a canonical optimal solution

Lemma

A canonical optimal solution does not have any intersecting balls.

Proof: Choose v at distance r2 from v1 on path v1–v2.

v1

v2r1 r2

r1

r2

u

B(v1, r1)

B(v2, r2)

v

Introduction Related Works and new results Our Results Conclusion

Properties of a canonical optimal solution

Lemma

A canonical optimal solution does not have any intersecting balls.

Proof: Distance of v from B(v1, r1) is r2+r1.

v1

v2r1 r2

r1

r2

u

B(v1, r1)

B(v2, r2)

v

Introduction Related Works and new results Our Results Conclusion

Properties of a canonical optimal solution

Lemma

A canonical optimal solution does not have any intersecting balls.

Proof: Distance of v from B(v2, r2) is r1+r2.

v1

v2r1 r2

r1

r2

u

B(v1, r1)

B(v2, r2)

v

Introduction Related Works and new results Our Results Conclusion

Properties of a canonical optimal solution

Lemma

A canonical optimal solution does not have any intersecting balls.

Proof: Thus, the ball B(v , r1 + r2) covers all vertices.

r1 r2

r1

r2

B(v, r1 + r2)

v

Introduction Related Works and new results Our Results Conclusion

Properties of a canonical optimal solution, Cont’d

Lemma

In a canonical optimal solution, each ball is adjacent to at most
two balls. (Fails with existence of zero balls.)

Proof:

Introduction Related Works and new results Our Results Conclusion

Properties of a canonical optimal solution, Cont’d

Lemma

In a canonical optimal solution, each ball is adjacent to at most
two balls. (Fails with existence of zero balls.)

Proof: Substitute these balls with B(u, r + r1 + r2 + 1).

B(v1, r1)
B(v2, r2)

B(v3, r3)

B(v, r)

r1 ≥ r2 ≥ r3 ≥ 1

Introduction Related Works and new results Our Results Conclusion

Properties of a canonical optimal solution, Cont’d

Corollary

In a canonical optimal solution, the balls form a path or cycle.

Observation: the number of all possible balls ≤ n2.

The case of cycle is similar to the case of path.

Consider a canonical optimal solution: B∗1 ,B
∗
2 , . . . ,B

∗
k .

. . .
B∗1 B∗2 B∗k−1 B∗k

Introduction Related Works and new results Our Results Conclusion

Properties of a canonical optimal solution, Cont’d

Corollary

In a canonical optimal solution, the balls form a path or cycle.

Observation: the number of all possible balls ≤ n2.

The case of cycle is similar to the case of path.

Consider a canonical optimal solution: B∗1 ,B
∗
2 , . . . ,B

∗
k .

. . .
B∗1 B∗2 B∗k−1 B∗k

Introduction Related Works and new results Our Results Conclusion

Properties of a canonical optimal solution, Cont’d

Corollary

In a canonical optimal solution, the balls form a path or cycle.

Observation: the number of all possible balls ≤ n2.

The case of cycle is similar to the case of path.

Consider a canonical optimal solution: B∗1 ,B
∗
2 , . . . ,B

∗
k .

. . .
B∗1 B∗2 B∗k−1 B∗k

Introduction Related Works and new results Our Results Conclusion

Properties of a canonical optimal solution, Cont’d

Corollary

In a canonical optimal solution, the balls form a path or cycle.

Observation: the number of all possible balls ≤ n2.

The case of cycle is similar to the case of path.

Consider a canonical optimal solution: B∗1 ,B
∗
2 , . . . ,B

∗
k .

. . .
B∗1 B∗2 B∗k−1 B∗k

Introduction Related Works and new results Our Results Conclusion

General Idea

Guess the last ball, remove it, and solve recursively.

BestCover(H, j):

1 For all choices of a ball B, C ← B ∪BestCover(H \B, j − 1).
2 Return the best solution in C.

Gi : the first i balls, Gk = G and Gi−1 = Gi \ B∗i
BestCover(H, j): optimal when H = Gi and j = i

When H = Gi , j = i , and B = B∗i , C contains
BestCover(Gi−1, i − 1) ∪B∗i .

Introduction Related Works and new results Our Results Conclusion

General Idea

Guess the last ball, remove it, and solve recursively.

BestCover(H, j):

1 For all choices of a ball B, C ← B ∪BestCover(H \B, j − 1).
2 Return the best solution in C.

Gi : the first i balls, Gk = G and Gi−1 = Gi \ B∗i
BestCover(H, j): optimal when H = Gi and j = i

When H = Gi , j = i , and B = B∗i , C contains
BestCover(Gi−1, i − 1) ∪B∗i .

Introduction Related Works and new results Our Results Conclusion

General Idea

Guess the last ball, remove it, and solve recursively.

BestCover(H, j):

1 For all choices of a ball B, C ← B ∪BestCover(H \B, j − 1).
2 Return the best solution in C.

Gi : the first i balls, Gk = G and Gi−1 = Gi \ B∗i

BestCover(H, j): optimal when H = Gi and j = i

When H = Gi , j = i , and B = B∗i , C contains
BestCover(Gi−1, i − 1) ∪B∗i .

. . .
B∗1 B∗2 B∗i−1 B∗i

Introduction Related Works and new results Our Results Conclusion

General Idea

Guess the last ball, remove it, and solve recursively.

BestCover(H, j):

1 For all choices of a ball B, C ← B ∪BestCover(H \B, j − 1).
2 Return the best solution in C.

Gi : the first i balls, Gk = G and Gi−1 = Gi \ B∗i
BestCover(H, j): optimal when H = Gi and j = i

When H = Gi , j = i , and B = B∗i , C contains
BestCover(Gi−1, i − 1) ∪B∗i .

. . .
B∗1 B∗2 B∗i−1 B∗i

Introduction Related Works and new results Our Results Conclusion

General Idea

Guess the last ball, remove it, and solve recursively.

BestCover(H, j):

1 For all choices of a ball B, C ← B ∪BestCover(H \B, j − 1).
2 Return the best solution in C.

Gi : the first i balls, Gk = G and Gi−1 = Gi \ B∗i
BestCover(H, j): optimal when H = Gi and j = i

When H = Gi , j = i , and B = B∗i , C contains
BestCover(Gi−1, i − 1) ∪B∗i .

. . .
B∗1 B∗2 B∗i−1 B∗i

Introduction Related Works and new results Our Results Conclusion

General Idea

Guess the last ball, remove it, and solve recursively.

BestCover(H, j):

1 For all choices of a ball B, C ← B ∪BestCover(H \B, j − 1).
2 Return the best solution in C.

Gi : the first i balls, Gk = G and Gi−1 = Gi \ B∗i
BestCover(H, j): optimal when H = Gi and j = i

When H = Gi , j = i , and B = B∗i , C contains
BestCover(Gi−1, i − 1) ∪B∗i .

. . .
B∗1 B∗2 B∗i−1

Introduction Related Works and new results Our Results Conclusion

Dealing with running time

Without any book keeping, the running time is
O((n2)k + k2n).

Dynamic programming Table[H, j] → O(k2n).

Observation: we are interested to solve only the subproblems
corresponding to graphs Gi .

F : a poly. size family of subgraphs, contains all Gi .

Run BestCover(H, j) only for H ∈ F .

Introduction Related Works and new results Our Results Conclusion

Dealing with running time

Without any book keeping, the running time is
O((n2)k + k2n).

Dynamic programming Table[H, j] → O(k2n).

Observation: we are interested to solve only the subproblems
corresponding to graphs Gi .

F : a poly. size family of subgraphs, contains all Gi .

Run BestCover(H, j) only for H ∈ F .

Introduction Related Works and new results Our Results Conclusion

Dealing with running time

Without any book keeping, the running time is
O((n2)k + k2n).

Dynamic programming Table[H, j] → O(k2n).

Observation: we are interested to solve only the subproblems
corresponding to graphs Gi .

F : a poly. size family of subgraphs, contains all Gi .

Run BestCover(H, j) only for H ∈ F .

Introduction Related Works and new results Our Results Conclusion

Dealing with running time

Without any book keeping, the running time is
O((n2)k + k2n).

Dynamic programming Table[H, j] → O(k2n).

Observation: we are interested to solve only the subproblems
corresponding to graphs Gi .

F : a poly. size family of subgraphs, contains all Gi .

Run BestCover(H, j) only for H ∈ F .

Introduction Related Works and new results Our Results Conclusion

Dealing with running time

Without any book keeping, the running time is
O((n2)k + k2n).

Dynamic programming Table[H, j] → O(k2n).

Observation: we are interested to solve only the subproblems
corresponding to graphs Gi .

F : a poly. size family of subgraphs, contains all Gi .

Run BestCover(H, j) only for H ∈ F .

Introduction Related Works and new results Our Results Conclusion

Dealing with running time

BestCover(Gk = G, k)

.
B∗k

(Gk \B1, k − 1) (Gk \Bq, k − 1)(Gk−1, k − 1)

.
B∗k−1

.
B∗2

(Gk−1 \B1, k − 2) (Gk−1 \Bq, k − 2)(Gk−2, k − 2)

(G2, 2)

... ...

... ...

(G1, 1)

...

Introduction Related Works and new results Our Results Conclusion

Finding F

Lemma

F can be computed in polynomial time, has at most 2n2 + 1
members and contains Gi for all 1 ≤ i ≤ k.

Proof: The algorithm for finding F is as follows:

1 For each ball B, consider G \ B. If it has at most two
components, add each component to F .

2 Add G to F .

Introduction Related Works and new results Our Results Conclusion

Finding F

Lemma

F can be computed in polynomial time, has at most 2n2 + 1
members and contains Gi for all 1 ≤ i ≤ k.

Proof: The algorithm for finding F is as follows:

1 For each ball B, consider G \ B. If it has at most two
components, add each component to F .

2 Add G to F .

Introduction Related Works and new results Our Results Conclusion

Finding F

Lemma

F can be computed in polynomial time, has at most 2n2 + 1
members and contains Gi for all 1 ≤ i ≤ k.

Proof: The algorithm for finding F is as follows:

1 For each ball B, consider G \ B. If it has at most two
components, add each component to F .

2 Add G to F .

B∗1 B∗k

.
B∗i−1 B∗i B∗i+1

Introduction Related Works and new results Our Results Conclusion

Finding F

Lemma

F can be computed in polynomial time, has at most 2n2 + 1
members and contains Gi for all 1 ≤ i ≤ k.

Proof: The algorithm for finding F is as follows:

1 For each ball B, consider G \ B. If it has at most two
components, add each component to F .

2 Add G to F .

B∗1 B∗k

.
B∗i−1 B∗i+1

Introduction Related Works and new results Our Results Conclusion

Finding F

Lemma

F can be computed in polynomial time, has at most 2n2 + 1
members and contains Gi for all 1 ≤ i ≤ k.

Proof: The algorithm for finding F is as follows:

1 For each ball B, consider G \ B. If it has at most two
components, add each component to F .

2 Add G to F .

Introduction Related Works and new results Our Results Conclusion

Euclidean MSD

The clusters can be characterized as polygons in plane.

Similar Gibson et al.’s (SODA’08) exact algorithm for
Euclidean MSR.

High level idea of Gibson et al.’s exact algorithm: separate an
instance into two parts by guessing a constant number of
discs in optimum.

The number of possible discs is polynomial → one can
enumerate all constant size subset of discs in poly. time.

Recursively solve each part using dynamic programming.

Introduction Related Works and new results Our Results Conclusion

Euclidean MSD

The clusters can be characterized as polygons in plane.

Similar Gibson et al.’s (SODA’08) exact algorithm for
Euclidean MSR.

High level idea of Gibson et al.’s exact algorithm: separate an
instance into two parts by guessing a constant number of
discs in optimum.

The number of possible discs is polynomial → one can
enumerate all constant size subset of discs in poly. time.

Recursively solve each part using dynamic programming.

Introduction Related Works and new results Our Results Conclusion

Euclidean MSD

The clusters can be characterized as polygons in plane.

Similar Gibson et al.’s (SODA’08) exact algorithm for
Euclidean MSR.

High level idea of Gibson et al.’s exact algorithm: separate an
instance into two parts by guessing a constant number of
discs in optimum.

The number of possible discs is polynomial → one can
enumerate all constant size subset of discs in poly. time.

Recursively solve each part using dynamic programming.

Introduction Related Works and new results Our Results Conclusion

Euclidean MSD

The clusters can be characterized as polygons in plane.

Similar Gibson et al.’s (SODA’08) exact algorithm for
Euclidean MSR.

High level idea of Gibson et al.’s exact algorithm: separate an
instance into two parts by guessing a constant number of
discs in optimum.

The number of possible discs is polynomial → one can
enumerate all constant size subset of discs in poly. time.

Recursively solve each part using dynamic programming.

Introduction Related Works and new results Our Results Conclusion

Euclidean MSD

The clusters can be characterized as polygons in plane.

Similar Gibson et al.’s (SODA’08) exact algorithm for
Euclidean MSR.

High level idea of Gibson et al.’s exact algorithm: separate an
instance into two parts by guessing a constant number of
discs in optimum.

The number of possible discs is polynomial → one can
enumerate all constant size subset of discs in poly. time.

Recursively solve each part using dynamic programming.

Introduction Related Works and new results Our Results Conclusion

Adapting Gibson et al.’s Algorithm

Main Difficulties

Exponential possible clusters.

Thin clusters → some packing arguments fails.

Our modifications → analysis should be changed.

Handling the first issue

Approximate each polygon with an enclosing polygon of
diameter within factor (1 + ε).

New polygon is simpler: determined by O(1/ε) points
→ O(n1/ε) new polygons.

size c subsets of new polygons, enumerable in O(n
c
ε).

Intuitive Example: A regular polygon and the polygon
constructed from extension of every ith edges of it

Introduction Related Works and new results Our Results Conclusion

Adapting Gibson et al.’s Algorithm

Main Difficulties

Exponential possible clusters.

Thin clusters → some packing arguments fails.

Our modifications → analysis should be changed.

Handling the first issue

Approximate each polygon with an enclosing polygon of
diameter within factor (1 + ε).

New polygon is simpler: determined by O(1/ε) points
→ O(n1/ε) new polygons.

size c subsets of new polygons, enumerable in O(n
c
ε).

Intuitive Example: A regular polygon and the polygon
constructed from extension of every ith edges of it

Introduction Related Works and new results Our Results Conclusion

Adapting Gibson et al.’s Algorithm

Main Difficulties

Exponential possible clusters.

Thin clusters → some packing arguments fails.

Our modifications → analysis should be changed.

Handling the first issue

Approximate each polygon with an enclosing polygon of
diameter within factor (1 + ε).

New polygon is simpler: determined by O(1/ε) points
→ O(n1/ε) new polygons.

size c subsets of new polygons, enumerable in O(n
c
ε).

Intuitive Example: A regular polygon and the polygon
constructed from extension of every ith edges of it

Introduction Related Works and new results Our Results Conclusion

Adapting Gibson et al.’s Algorithm

Main Difficulties

Exponential possible clusters.

Thin clusters → some packing arguments fails.

Our modifications → analysis should be changed.

Handling the first issue

Approximate each polygon with an enclosing polygon of
diameter within factor (1 + ε).

New polygon is simpler: determined by O(1/ε) points
→ O(n1/ε) new polygons.

size c subsets of new polygons, enumerable in O(n
c
ε).

Intuitive Example: A regular polygon and the polygon
constructed from extension of every ith edges of it

Introduction Related Works and new results Our Results Conclusion

Adapting Gibson et al.’s Algorithm

Main Difficulties

Exponential possible clusters.

Thin clusters → some packing arguments fails.

Our modifications → analysis should be changed.

Handling the first issue

Approximate each polygon with an enclosing polygon of
diameter within factor (1 + ε).

New polygon is simpler: determined by O(1/ε) points
→ O(n1/ε) new polygons.

size c subsets of new polygons, enumerable in O(n
c
ε).

Intuitive Example: A regular polygon and the polygon
constructed from extension of every ith edges of it

Introduction Related Works and new results Our Results Conclusion

Adapting Gibson et al.’s Algorithm

Main Difficulties

Exponential possible clusters.

Thin clusters → some packing arguments fails.

Our modifications → analysis should be changed.

Handling the first issue

Approximate each polygon with an enclosing polygon of
diameter within factor (1 + ε).

New polygon is simpler: determined by O(1/ε) points
→ O(n1/ε) new polygons.

size c subsets of new polygons, enumerable in O(n
c
ε).

Intuitive Example: A regular polygon and the polygon
constructed from extension of every ith edges of it

Introduction Related Works and new results Our Results Conclusion

Adapting Gibson et al.’s Algorithm

Main Difficulties

Exponential possible clusters.

Thin clusters → some packing arguments fails.

Our modifications → analysis should be changed.

Handling the first issue

Approximate each polygon with an enclosing polygon of
diameter within factor (1 + ε).

New polygon is simpler: determined by O(1/ε) points
→ O(n1/ε) new polygons.

size c subsets of new polygons, enumerable in O(n
c
ε).

Intuitive Example: A regular polygon and the polygon
constructed from extension of every ith edges of it

Introduction Related Works and new results Our Results Conclusion

Conclusion and Future Works

The difficult core of the problem: finding the zero balls.

Open questions: an exact algorithm in presence of singletons?
A PTAS for the general version?

We gave a PTAS for Euclidean MSD. The complexity of
Euclidean MSD?

The MSD problem with constant k: we found an exact
algorithm.

Introduction Related Works and new results Our Results Conclusion

Conclusion and Future Works

The difficult core of the problem: finding the zero balls.

Open questions: an exact algorithm in presence of singletons?
A PTAS for the general version?

We gave a PTAS for Euclidean MSD. The complexity of
Euclidean MSD?

The MSD problem with constant k: we found an exact
algorithm.

Introduction Related Works and new results Our Results Conclusion

Conclusion and Future Works

The difficult core of the problem: finding the zero balls.

Open questions: an exact algorithm in presence of singletons?
A PTAS for the general version?

We gave a PTAS for Euclidean MSD. The complexity of
Euclidean MSD?

The MSD problem with constant k: we found an exact
algorithm.

Introduction Related Works and new results Our Results Conclusion

Conclusion and Future Works

The difficult core of the problem: finding the zero balls.

Open questions: an exact algorithm in presence of singletons?
A PTAS for the general version?

We gave a PTAS for Euclidean MSD. The complexity of
Euclidean MSD?

The MSD problem with constant k: we found an exact
algorithm.

Introduction Related Works and new results Our Results Conclusion

Thanks for your attention!
Questions?

	Introduction
	The Problems
	Motivations

	Related Works and new results
	Related Works
	New Results

	Our Results
	MSR Restricted to Unweighted Graphs
	PTAS for Euclidean MSD

	Conclusion
	dummy!

